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Introduction

What? Yet another statistics book? Well, this is a statistics book, all 
right — but in my humble (and thoroughly biased) opinion, it’s still, 
after four editions, not just another statistics book.

What? Yet another Excel book? Same thoroughly biased opinion (still, after four 
editions) — it’s not just another Excel book. What? Yet another edition of a book 
that’s not just another statistics book and not just another Excel book? Well . . . yes. 
For the fifth time, you got me there.

Here’s the story — for the previous four editions and for this one. Many statistics 
books teach you the concepts but don’t give you a way to apply them — which 
often leads to a lack of understanding. With Excel, you have a ready-made pack-
age for applying statistics concepts.

Looking at it from the opposite direction, many Excel books show you Excel’s 
capabilities but don’t tell you about the concepts behind them. Before I tell you 
about an Excel statistical tool, I give you the statistical foundation it’s based on. 
That way, you understand the tool when you use it — and you use it more effec-
tively. I didn’t want to write a book that’s just “select this menu” and “click this 
button.” Some of that is necessary, of course, in any book that shows you how to 
use a software package. My goal was to go way beyond that.

Neither did I want to write a statistics “cookbook”  — when-faced-with- 
problem-#862-use-statistical-procedure-#412. My goal was to go way beyond 
that, too.

This book isn’t just about statistics or just about Excel  — it sits firmly at the 
intersection of the two. In the course of telling you about statistics, I cover every 
Excel statistical feature. (Well, almost every one. I did leave one out and, truth be 
told, I left it out of the first four editions, too. It’s called “Fourier Analysis.” All the 
necessary math to understand it would take an entire book to present, and you 
may never use this tool anyway. Perhaps I’ll cover it in the infinitieth  
edition. . . .)
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About This Book
Although statistics involves a logical progression of concepts, I’ve organized this 
book so that you can open it up in any chapter and start reading. The idea is for 
you to find what you’re looking for in a hurry and use it immediately — whether 
it’s a statistical concept or an Excel tool.

On the other hand, reading from cover to cover is okay if you’re so inclined. If 
you’re a statistics newbie and you have to use Excel for statistical analysis, I rec-
ommend you begin at the beginning — even if you know Excel pretty well.

What’s New in This Edition
I wanted to add a dimension or two to this fifth edition, and I think I’ve done just 
that.

In addition to the usual material on Windows and on the Mac, I also cover — wait 
for it — the iPad! The iPad doesn’t support Excel’s major statistical package (the 
Analysis Toolpak), but other packages fill the void, as you’ll see. I think you’ll find 
that Excel on the iPad is a powerful tool for statistics. (I’m working with a fourth 
generation, 12.9-inch iPad Pro. If you’re working with a different model, your 
mileage may vary.)

Throughout this book, then, you see material about Excel on the Mac and on the 
iPad — particularly when MacOS and iPadOS differ substantially from Windows. 
Otherwise, it’s been my experience that Mac users and iPad users are a hearty lot 
and know how to adapt. (So? Enough . . . Apple polishing?)

Making its debut in this edition is the increasingly popular topic of logistic regres-
sion (see Chapter 21).

In Chapter 20, I’ve added a section on simulating a business. It’s my first foray 
into Excel’s What If analysis tools.

In this edition, I’ve moved the discussion about some of the lesser used charts 
from Chapter 3 to an online appendix you can download at www.dummies.com/go/
statisticalanalysiswexcelfd5e.

Speaking of online appendixes, I’ve moved an online appendix from the fourth 
edition, “When Your Data Live Elsewhere,” into this edition. I think it’s useful 

http://www.dummies.com/go/statisticalanalysiswexcelfd5e
http://www.dummies.com/go/statisticalanalysiswexcelfd5e
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information you should have at your fingertips. Also moving from online to 
printed page is an appendix called “Tips for Teachers (And Learners).”

And finally, due to popular demand, you can download this edition’s spreadsheets! 
(Again, available at www.dummies.com/go/statisticalanalysiswexcelfd5e.) 
The spreadsheets contain just the data. You still have to follow the steps I provide 
to complete the analyses.

What’s New in Excel (Microsoft 365)
I work with the cloud-based subscription version of Excel, which is part of Micro-
soft 365. As part of the subscription, I receive updates you may not have if you 
work with Excel 2021  — a stand-alone product. Were you to examine the two 
incarnations of Excel up close and personal, you probably wouldn’t find much dif-
ference in functionality. (But see the section on array functions in Chapter 2.)

Although Excel hasn’t added any new statistical functions, the Windows version 
(of 365) has an exciting new feature called linked data, which enables you to look 
up information about a variety of topics (movies, universities, stocks, and more) 
without leaving Excel. (Exciting as it is, we won’t be working with this one.)

The Mac and iPad have added Data from Pictures. As its name suggests, this fea-
ture looks at a picture of a data table and puts the data into a spreadsheet. I cover 
this topic in Chapter 2.

A new feature in Windows and Mac called Analyze Data offers insights about your 
data. I cover this feature in Chapter 2 as well.

An add-in called XLMiner Analysis ToolPak mimics Excel’s Analysis Toolpak (an 
extensive set of analytical tools) and adds logistic regression, which, as I men-
tioned, I cover in Chapter 21.

Foolish Assumptions
This isn’t an introductory book about Excel or about Windows, Mac, or iPad, so 
I’m assuming that you

 » Know how to use your computer: I don’t spell out the details of pointing, 
clicking, selecting, and other basic actions.

http://www.dummies.com/go/statisticalanalysiswexcelfd5e
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 » Have Excel (Microsoft 365 subscription) installed on your machine and 
can work along with the examples: I don’t walk you through the steps of 
Excel installation. Incidentally, I work with the 32-bit version — it seems to get 
the updates more quickly than the 64-bit version does. Excel 2021 should 
work for most of the examples, but the subscription version receives the 
latest updates.

 » Have worked with Excel: I don’t go into the essentials of worksheets and 
formulas. I do fill you in on a few Excel fundamentals in Chapter 1, however.

If you don’t know much about Excel, consider looking into Greg Harvey’s excel-
lent Excel books in the For Dummies series.

Icons Used in This Book
As is the case with all For Dummies books, icons appear all over the place. Each one 
is a little picture in the margin that lets you know something special about the 
paragraph it sits next to.

This icon points out a hint or a shortcut that can help you in your work and make 
you an all-around better human being.

This one points out timeless wisdom to take with you long after you finish this 
book, young Jedi.

Pay attention to this icon — it’s a reminder to avoid an action that may gum up 
the works for you.

This icon indicates material you can blow right past if statistics and Excel aren’t 
your passion.



Introduction      5

Where to Go from Here
You can start the book anywhere, but here are a few hints. Want to learn the foun-
dations of statistics? Turn the page. Introduce yourself to Excel’s statistical fea-
tures? That’s Chapter 2. Want to start with graphics? Hit Chapter 3. For anything 
else, find it in the table of contents or in the index and go for it.

Beyond This Book
In addition to what you’re reading right now, this book comes with a free, access-
anywhere Cheat Sheet that will help you quickly use the tools I discuss. To find 
this Cheat Sheet, visit www.dummies.com and search for Statistical Analysis with 
Excel For Dummies Cheat Sheet in the Search box. And don’t forget to check out the 
bonus content on this book’s companion website, at http://www.dummies.com/
go/statisticalanalysiswexcelfd5e.

If you’ve read any of the previous editions, welcome back!

If not, it’s nice to meet you.

http://www.dummies.com
http://www.dummies.com/go/statisticalanalysiswexcelfd5e
http://www.dummies.com/go/statisticalanalysiswexcelfd5e
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Find out about Excel’s statistical capabilities

Explore how to work with populations and samples

Test your hypotheses

Understand errors in decision-making

Determine independent and dependent variables



CHAPTER 1  Evaluating Data in the Real World      9

Chapter 1
Evaluating Data in the 
Real World

The field of statistics is all about decision-making — decision-making based 
on groups of numbers. Statisticians constantly ask questions: What do the 
numbers tell us? What are the trends? What predictions can we make? What 

conclusions can we draw?

To answer these questions, statisticians have developed an impressive array of 
analytical tools. These tools help us make sense of the mountains of data that are 
out there waiting for us to delve into, and to understand the numbers we generate 
in the course of our own work.

The Statistical (and Related) Notions You 
Just Have to Know

Because intensive calculation is often part and parcel of the statistician’s tool set, 
many people have the misconception that statistics is about number crunching. 
Number crunching is just one small step on the path to sound decisions, however.

IN THIS CHAPTER

 » Introducing statistical concepts

 » Generalizing from samples to 
populations

 » Getting into probability

 » Making decisions

 » Understanding important Excel 
fundamentals
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By shouldering the number crunching load, software increases your speed of 
travel down that path. Some software packages are specialized for statistical anal-
ysis and contain many of the tools that statisticians use. Although not marketed 
specifically as a statistical package, Excel provides a number of these tools, which 
is why I wrote this book.

I just said that number crunching is a small step on the path to sound decisions. 
The most important part are the concepts statisticians work with, and that’s what 
I talk about for most of the rest of this chapter.

Samples and populations
On election night, TV commentators routinely predict the outcome of elections 
before the polls close. Most of the time they’re right. How do they do that?

The trick is to interview a sample of voters right after they cast their ballots. 
Assuming the voters tell the truth about whom they voted for, and assuming the 
sample truly represents the population, network analysts use the sample data to 
generalize to the population of voters.

This is the job of a statistician — to use the findings from a sample to make a 
decision about the population from which the sample comes. But sometimes those 
decisions don’t turn out the way the numbers predict. History buffs are probably 
familiar with the memorable photo of President Harry Truman holding up a copy 
of the Chicago Daily Tribune with the famous, but incorrect, headline “Dewey 
Defeats Truman” after the 1948 election. Part of the statistician’s job is to express 
how much confidence they have in the decision.

Another election-related example speaks to the idea of the confidence in the deci-
sion. Pre-election polls (again, assuming a representative sample of voters) tell 
you the percentage of sampled voters who prefer each candidate. The polling 
organization adds how accurate it believes the polls are. When you hear a news-
caster say something like “accurate to within 3 percent,” you’re hearing a judg-
ment about confidence.

Here’s another example. Suppose you’ve been assigned to find the average read-
ing speed of all fifth grade children in the United States but you haven’t got the 
time or the money to test them all. What would you do?

Your best bet is to take a sample of fifth-graders, measure their reading speeds (in 
words per minute), and calculate the average of the reading speeds in the sample. 
You can then use the sample average as an estimate of the population average.
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Estimating the population average is one kind of inference that statisticians make 
from sample data. I discuss inference in more detail in the upcoming section 
“Inferential Statistics: Testing Hypotheses.”

Here’s some terminology you have to know: Characteristics of a population (like 
the population average) are called parameters, and characteristics of a sample (like 
the sample average) are called statistics. When you confine your field of view to 
samples, your statistics are descriptive. When you broaden your horizons and con-
cern yourself with populations, your statistics are inferential.

And here’s a notation convention you have to know: Statisticians use  
Greek letters ((μ, σ, ρ) to stand for parameters, and English letters 

Pr Event
Number of waystheevent canoccur

Total number of possibleeevents
, s, r) to stand for statistics.  

Figure  1-1 summarizes the relationship between populations and samples, and 
between parameters and statistics.

Variables: Dependent and independent
Simply put, a variable is something that can take on more than one value. (Some-
thing that can have only one value is called a constant.) Some variables you might 
be familiar with are today’s temperature, the Dow Jones Industrial Average, your 
age, and the value of the dollar against the euro.

Statisticians care about two kinds of variables: independent and dependent. Each 
kind of variable crops up in any study or experiment, and statisticians assess the 
relationship between them.

Imagine a new way of teaching reading that’s intended to increase the reading 
speed of fifth-graders. Before putting this new method into schools, it’s a good 
idea to test it. To do that, a researcher randomly assigns a sample of fifth-grade 

FIGURE 1-1: 
The relationship 

between 
populations and 

samples, and 
between 

parameters and 
statistics.
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students to one of two groups: One group receives instruction via the new method, 
and the other receives instruction via traditional methods. Before and after both 
groups receive instruction, the researcher measures the reading speeds of all the 
children in this study. What happens next? I get to that in the upcoming section 
“Inferential Statistics: Testing Hypotheses.”

For now, understand that the independent variable here is the method of instruc-
tion. The two possible values of this variable are new and traditional. The depen-
dent variable is the improvement in reading speed (a child’s speed after instruction 
minus that child’s speed before instruction) — which you would measure in words 
per minute.

In general, the idea is to find out if changes in the independent variable are asso-
ciated with changes in the dependent variable.

In the examples that appear throughout the book, I show you how to use Excel to 
calculate characteristics of groups of scores. Keep in mind that each time I show 
you a group of scores, I’m really talking about the values of a dependent variable.

Types of data
Data come in four kinds. When you work with a variable, the way you work with it 
depends on what kind of data it is.

The first variety is called nominal data. If a number is a piece of nominal data, it’s 
just a name. Its value doesn’t signify anything. A good example is the number on 
an athlete’s jersey. It’s just a way of identifying the athlete. The number has noth-
ing to do with the athlete’s level of skill.

Next come ordinal data. Ordinal data are all about order, and numbers begin to 
take on meaning over and above just being identifiers. A higher number indicates 
the presence of more of a particular attribute than a lower number. One example 
is the Mohs scale: Used since 1822, it’s a scale whose values are 1 through 10; min-
eralogists use this scale to rate the hardness of substances. Diamond, rated at 10, 
is the hardest. Talc, rated at 1, is the softest. A substance that has a given rating 
can scratch any substance that has a lower rating.

What’s missing from the Mohs scale (and from all ordinal data) is the idea of 
equal intervals and equal differences. The difference between a hardness of 10 and 
a hardness of 8 is not the same as the difference between a hardness of 6 and a 
hardness of 4.
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Interval data provide equal differences. Fahrenheit temperatures provide an exam-
ple of interval data. The difference between 60 degrees and 70 degrees is the same 
as the difference between 80 degrees and 90 degrees.

Here’s something that might surprise you about Fahrenheit temperatures: A tem-
perature of 100 degrees isn’t twice as hot as a temperature of 50 degrees. For ratio 
statements (twice as much as, half as much as) to be valid, zero has to mean the 
complete absence of the attribute you’re measuring. A temperature of 0 degrees F 
doesn’t mean the absence of heat — it’s just an arbitrary point on the Fahrenheit 
scale.

The last data type, ratio data, includes a meaningful zero point. For temperatures, 
the Kelvin scale gives ratio data. One hundred degrees Kelvin is twice as hot as 50 
degrees Kelvin. This is because the Kelvin zero point is absolute zero, where all 
molecular motion (the basis of heat) stops. Another example is a ruler. Eight 
inches is twice as long as four inches. A length of zero means a complete absence 
of length.

Any of these data types can form the basis of an independent variable or a depen-
dent variable. The analytical tools you use depend on the type of data you’re deal-
ing with.

A little probability
When statisticians make decisions, they express their confidence about those 
decisions in terms of probability. They can never be certain about what they 
decide. They can only tell you how probable their conclusions are.

So, what is probability? The best way to attack this is with a few examples. If you 
toss a coin, what’s the probability that it comes up heads? Intuitively, you know 
that if the coin is fair, you have a 50-50 chance of heads and a 50-50 chance of 
tails. In terms of the kinds of numbers associated with probability, that’s ½.

How about rolling a die? (That’s one member of a pair of dice.) What’s the proba-
bility that you roll a 3? Hmm. . . . A die has six faces and one of them is 3, so that 
ought to be 1⁄6, right? Right.

Here’s one more. You have a standard deck of playing cards. You select one card at 
random. What’s the probability that it’s a club? Well, a deck of cards has four 
suits, so that answer is ¼.

I think you’re getting the picture. If you want to know the probability that an 
event occurs, figure out how many ways that event can happen and divide by the 
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total number of events that can happen. In each of the three examples, the event 
we’re interested in (heads, 3, or club) happens only one way.

Things can get a bit more complicated. When you toss a die, what’s the probability 
you roll a 3 or a 4? Now you’re talking about two ways the event you’re interested 
in can occur, so that’s (1 1) 6 =/ 2

6
1

3. What about the probability of rolling an 
even number? That has to be 2, 4, or 6, and the probability is (1 1 1) 6/ 3

6
1

2.

On to another kind of probability question. Suppose you roll a die and toss a coin 
at the same time. What’s the probability you roll a 3 and the coin comes up heads? 
Consider all the possible events that can occur when you roll a die and toss a coin 
at the same time. The outcome can be a head and 1-6 or a tail and 1-6. That’s a 
total of 12 possibilities. The head-and-3 combination can happen only one way, so 
the answer is 1 12.

In general, the formula for the probability that a particular event occurs is

X

I begin this section by saying that statisticians express their confidence about 
their decisions in terms of probability, which is really why I brought up this topic 
in the first place. This line of thinking leads me to conditional probability — the 
probability that an event occurs given that some other event occurs. For example, 
suppose I roll a die, take a look at it (so that you can’t see it), and tell you I’ve 
rolled an even number. What’s the probability that I’ve rolled a 2? Ordinarily, the 
probability of a 2 is 1⁄6, but I’ve narrowed the field. I’ve eliminated the three odd 
numbers (1, 3, and 5) as possibilities. In this case, only the three even numbers (2, 
4, and 6) are possible, so now the probability of rolling a 2 is 1⁄3.

Exactly how does conditional probability play into statistical analysis? Read on.

Inferential Statistics: Testing Hypotheses
In advance of doing a study, a statistician draws up a tentative explanation — a 
hypothesis — of why the data might come out a certain way. After the study is 
complete and the sample data are all tabulated, the statistician faces the essential 
decision every statistician has to make: whether or not to reject the hypothesis.

That decision is wrapped in a conditional probability question — what’s the prob-
ability of obtaining the sample data, given that this hypothesis is correct? Statis-
tical analysis provides tools to calculate the probability. If the probability turns 
out to be low, the statistician rejects the hypothesis.
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Suppose you’re interested in whether or not a particular coin is fair — whether it 
has an equal chance of coming up heads or tails. To study this issue, you’d take the 
coin and toss it a number of times — say, 100. These 100 tosses make up your 
sample data. Starting from the hypothesis that the coin is fair, you’d expect that 
the data in your sample of 100 tosses would show around 50 heads and 50 tails.

If it turns out to be 99 heads and 1 tail, you’d undoubtedly reject the fair coin 
hypothesis. Why? The conditional probability of getting 99 heads and 1 tail given 
a fair coin is very low. Wait a second. The coin could still be fair and you just hap-
pened to get a 99-1 split, right? Absolutely. In fact, you never really know. You 
have to gather the sample data (the results from 100 tosses) and make a decision. 
Your decision might be right, or it might not.

Juries face this dilemma all the time. They have to decide among competing 
hypotheses that explain the evidence in a trial. (Think of the evidence as data.) 
One hypothesis is that the defendant is guilty. The other is that the defendant is 
not guilty. Jury members have to consider the evidence and, in effect, answer a 
conditional probability question: What’s the probability of the evidence given that 
the defendant is not guilty? The answer to this question determines the verdict.

Null and alternative hypotheses
Consider once again the coin tossing study I mention in the preceding section. The 
sample data are the results from the 100 tosses. Before tossing the coin, you might 
start with the hypothesis that the coin is a fair one so that you expect an equal 
number of heads and tails. This starting point is called the null hypothesis. The sta-
tistical notation for the null hypothesis is H0. According to this hypothesis, any 
heads-tails split in the data is consistent with a fair coin. Think of it as the idea 
that nothing in the results of the study is out of the ordinary.

An alternative hypothesis is possible: The coin isn’t a fair one, and it’s loaded to 
produce an unequal number of heads and tails. This hypothesis says that any 
heads-tails split is consistent with an unfair coin. The alternative hypothesis is 
called, believe it or not, the alternative hypothesis. The statistical notation for the 
alternative hypothesis is H1.

With the hypotheses in place, toss the coin 100 times and note the number of 
heads and tails. If the results are something like 90 heads and 10 tails, it’s a good 
idea to reject H0. If the results are around 50 heads and 50 tails, don’t reject H0. 
Similar ideas apply to the reading speed example I give earlier, in the section 
“Samples and populations.” One sample of children receives reading instruction 
under a new method designed to increase reading speed, and the other learns via 
a traditional method. Measure the children’s reading speeds before and after 
instruction and tabulate the improvement for each child. The null hypothesis, H0, 
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is that one method isn’t different from the other. If the improvements are greater 
with the new method than with the traditional method — so much greater that 
it’s unlikely that the methods aren’t different from one another — reject H0. If 
they’re not greater, don’t reject H0.

Notice that I did not say “accept H0.” The way the logic works, you never accept a 
hypothesis. You either reject H0 or don’t reject H0.

Here’s a real-world example to help you understand this idea. Whenever a defend-
ant goes on trial, that person is presumed innocent until proven guilty. Think of 
innocent as H0. The prosecutor’s job is to convince the jury to reject H0. If the jurors 
reject, the verdict is guilty. If they don’t reject, the verdict is not guilty. The verdict 
is never innocent. That would be like accepting H0.

Back to the coin tossing example. Remember I said “around 50 heads and 50 tails” 
is what you could expect from 100 tosses of a fair coin. What does around mean? 
Also, I said if it’s 90-10, reject H0. What about 85-15? 80-20? 70-30? Exactly how 
much different from 50-50 does the split have to be for you to reject H0? In the 
reading speed example, how much greater does the improvement have to be to 
reject H0?

I don’t answer these questions now. Statisticians have formulated decision rules 
for situations like this, and you explore those rules throughout the book.

Two types of error
Whenever you evaluate the data from a study and decide to reject H0 or to not 
reject H0, you can never be absolutely sure. You never really know what the true 
state of the world is. In the context of the coin tossing example, that means you 
never know for certain if the coin is fair or not. All you can do is make a decision 
based on the sample data you gather. If you want to be certain about the coin, 
you’d have to have the data for the entire population of tosses — which means 
you’d have to keep tossing the coin until the end of time.

Because you’re never certain about your decisions, it’s possible to make an error 
regardless of what you decide. As I mention earlier in this chapter, the coin could 
be fair and you just happen to get 99 heads in 100 tosses. That’s not likely, and 
that’s why you reject H0. It’s also possible that the coin is biased, yet you just hap-
pen to toss 50 heads in 100 tosses. Again, that’s not likely and you don’t reject H0 
in that case.
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Although not likely, those errors are possible. They lurk in every study that 
involves inferential statistics. Statisticians have named them Type I and Type II.

If you reject H0 and you shouldn’t, that’s a Type I error. In the coin example, that’s 
rejecting the hypothesis that the coin is fair, when in reality it’s a fair coin.

If you don’t reject H0 and you should have, that’s a Type II error. That happens if 
you don’t reject the hypothesis that the coin is fair and in reality it’s biased.

How do you know if you’ve made either type of error? You don’t — at least not 
right after you make your decision to reject or not reject H0. (If it’s possible to 
know, you wouldn’t make the error in the first place!) All you can do is gather 
more data and see if the additional data are consistent with your decision.

If you think of H0 as a tendency to maintain the status quo and not interpret any-
thing as being out of the ordinary (no matter how it looks), a Type II error means 
you missed out on something big. Looked at in that way, Type II errors form the 
basis of many historical ironies.

Here’s what I mean: In the 1950s, a particular TV show gave talented young enter-
tainers a few minutes to perform on stage and a chance to compete for a prize. The 
audience voted to determine the winner. The producers held auditions around the 
country to find people for the show. Many years after the show went off the air, 
the producer was interviewed. The interviewer asked him if he had ever turned 
down anyone at an audition whom he shouldn’t have.

“Well,” said the producer, “once a young singer auditioned for us and he seemed 
really odd.”

“In what way?” asked the interviewer.

“In a couple of ways,” said the producer. “He sang really loud, gyrated his body 
and his legs when he played the guitar, and he had these long sideburns. We fig-
ured this kid would never make it in show business, so we thanked him for show-
ing up, but we sent him on his way.”

“Wait a minute — are you telling me you turned down . . .?”

“That’s right. We actually said no . . . to Elvis Presley!”

Now that’s a Type II error.
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Some Excel Fundamentals
A chapter on data evaluation might seem an odd place to talk about Excel funda-
mentals. This section and the next one help you get started with the statistical 
work that begins in Chapter 2 and continues throughout the book.

Figure 1-2 shows the Excel user interface in Windows 10. The tabbed band across 
the top is called the Ribbon (as it is on the Mac and the iPad).

Microsoft has developed shorthand for describing a mouse-click on a command 
button that lives on a tab on the Ribbon, and I use that shorthand throughout this 
book. The shorthand is

Tab | Command Button

To indicate clicking on the Insert tab’s Recommended Charts category button, for 
example, I write

Insert | Recommended Charts

When I click that button (with some data-containing cells selected), the Insert 
Chart dialog box, shown in Figure 1-3, appears.

FIGURE 1-2: 
The Excel 

interface in 
Windows.
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Notice that its Recommended Charts tab is open. Clicking the All Charts tab (which 
is not in the Mac version) changes the box to what you see in Figure 1-4, a gallery 
of all possible Excel charts.

FIGURE 1-3: 
Clicking Insert | 
Recommended 

Charts opens 
this box.

FIGURE 1-4: 
The All Charts tab 
in the Insert Chart 

dialog box.
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Chart is Excel’s name for graph.

On the iPad it all looks quite a bit different, as Figure 1-5 shows.

Excel on the iPad doesn’t use dialog boxes — instead, the iPad version relies on 
pop-up menus. So, if you’re an iPad user and I tell you about a procedure that 
involves dialog boxes, bear in mind that you have to make some adjustments.

To find the bulk of Excel’s statistical functionality, choose (on both Windows 
and Mac)

Formulas | More Functions | Statistical

This is an extension of the shorthand. It means, “Select the Formulas tab, click the 
More Functions button, and then select the Statistical Functions choice from the 
pop-up menu that opens.” Figure 1-6 shows what I mean.

In Chapter  2, I show you how to make the Statistical Functions menu more 
accessible.

On the iPad, it’s a slightly different story. Surprisingly, Excel on the iPad makes 
statistical functions a bit more accessible than on Windows or the Mac. It’s just

Formulas | Statistical

but you tap the Statistical icon (the word Statistical isn’t onscreen), as Figure 1-7 
shows.

FIGURE 1-5: 
Inserting a chart 

on the iPad.
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FIGURE 1-6: 
Accessing the 

Statistical 
Functions menu.

FIGURE 1-7: 
Accessing the 

Statistical 
functions on the 

iPad.
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Back in 2010, Microsoft changed the way Excel names its functions. The objective 
was to make a function’s purpose as obvious as possible from its name. Excel also 
changed some of the programming behind these functions to make them more 
accurate.

Excel continues this naming style while maintaining the older statistical func-
tions (pre-2010 vintage, and one  — FORECAST  — from 2013) for compatibility 
with older versions of Excel.

You won’t find the older functions on a Mac or Windows Statistical Functions 
menu. They have their own menu. To find it, choose Formulas | More Functions | 
Compatibility. On the iPad, tap Formulas | Compatibility. (The Compatibility icon 
is four icons to the right of the Statistical icon.)

Although I’m assuming you’re not new to Excel, I think it’s wise to take a little 
time and space to discuss Excel principles that figure prominently in statistical 
work. Knowing these fundamentals helps you work efficiently with Excel formu-
las. (If you’re an old hand at Excel, you can safely skip the next few sections.)

Autofilling cells
The first fundamental is autofill — Excel’s capability for repeating a calculation 
throughout a worksheet. Insert a formula into a cell, and you can drag that for-
mula into adjoining cells.

Figure 1-8 is a worksheet of expenditures for R&D in science and engineering at 
colleges and universities for the years shown. The data, taken from a U.S. National 
Science Foundation report, are in millions of dollars. Column H holds the total for 
each field, and Row 11 holds the total for each year. (I tell you more about column 
I in a moment.)

I started with column H blank and with row 11 blank. How did I get the totals into 
column H and row 11?

If I want to create a formula to calculate the first row total (for Physical Sciences), 
one way (among several) is to enter

= D2 + E2 + F2 + G2

into cell H2. (A formula always begins with an equal sign: =.) Press Enter and the 
total appears in H2.
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Now, to put that formula into cells H3 through H10, the trick is to position the 
cursor in the lower right corner of H2 until a plus sign (+) appears, hold down the 
left mouse button, and drag the mouse through the cells. That plus sign is called 
the cell’s fill handle.

When you finish dragging, release the mouse button and the row totals appear. 
This saves huge amounts of time because you don’t have to reenter the formula 
eight times.

Same thing with the column totals. One way to create the formula that sums up 
the numbers in the first column (1990) is to enter

=D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + D10

into cell D11. Position the cursor on D11’s fill handle, drag through row 11 and 
release in column H, and you autofill the totals into E11 through H11.

Dragging isn’t the only way to do it. Another way is to select the range of cells you 
want to autofill (including the one that contains the formula) and click

Home | Fill

(Fill is in the Home tab’s Editing area.)

Clicking Fill opens the Fill pop-up menu. (See Figure 1-9.) Select Down and you 
accomplish the same result as dragging and dropping.

FIGURE 1-8: 
Expenditures for 

R&D in science 
and engineering.
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Still another way is to choose Series from the Fill pop-up menu. Doing this opens 
the Series dialog box. (See Figure 1-10.) In this dialog box, select the AutoFill radio 
button and click OK, and you’re all set. This method takes one more step, but the 
Series dialog box is a bit more compatible with earlier versions of Excel.

I bring this up because statistical analysis often involves repeating a formula from 
cell to cell. The formulas are usually more complex than the ones in this section, 
and you might have to repeat them many times, so it pays to know how to autofill.

A quick way to autofill is to click in the first cell in the series, move the cursor to 
that cell’s lower right corner until the autofill handle appears, and double-click. 
This works on both PCs and Macs.

On the iPad, you select a cell and dots appear in the cell’s upper left and lower 
right corners. These dots are called selection handles. Tap the cell to open a pop-up 
menu. On the pop-up menu, tap Fill, touch the lower right selection handle, and 
drag in the desired direction (in this case, downward) to populate the cells. (See 
Figure 1-11.)

Notice that the iPad pop-up menu is laid out horizontally rather than vertically, as 
in traditional Microsoft Office applications. If you have an iPad Pro and a Magic 
keyboard as well, a two-finger click on the track pad opens a traditional-style 
(vertically arrayed) pop-up menu. If you go full-on old school and connect a 
mouse to your iPad Pro, a right-click opens a traditional pop-up menu.

FIGURE 1-9: 
The Fill pop-up 

menu.

FIGURE 1-10: 
The Series 

dialog box.
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You can have something like an iPad experience, even if you don’t own one — the 
catch is that your computer has to have a touchscreen. If it does, you can perform 
many of the iPad Excel gestures on your machine. So, a keyboard and a mouse can 
make an iPad act like a laptop, and a touchscreen can make your laptop act like  
an iPad.

Referencing cells
Another important fundamental principle is the way Excel references worksheet 
cells. Consider again the worksheet shown in Figure 1-8. Each autofilled formula 
is slightly different from the original. This, remember, is the formula in cell H2:

= D2 + E2 + F2 + G2

After autofill, the formula in H3 is

= D3 + E3 + F3 + G3

and the formula in H4 is — well, you get the picture.

This is perfectly appropriate. You want the total in each row, so Excel adjusts the 
formula accordingly as it automatically inserts it into each cell. This is called rela-
tive referencing — the reference (the cell label) gets adjusted relative to where it is 
in the worksheet. Here, the formula directs Excel to total up the numbers in the 
cells in the four columns immediately to the left.

FIGURE 1-11: 
Autofill on  

the iPad.
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Now for another possibility. Suppose you want to know each row total’s propor-
tion of the grand total (the number in H11). That should be straightforward, right? 
Create a formula for I2, and then autofill cells I3 through I10.

Similar to the earlier example, you start by entering this formula into I2:

=H2/H11

Press Enter and the proportion appears in I2. Position the cursor on the fill handle, 
drag through column I, release in I10, and — d’oh! Figure 1-12 shows the unhappy 
result — the extremely ugly #/DIV0! in I3 through I10. What’s the story?

The story is this: Unless you tell it not to, Excel uses relative referencing when you 
autofill. So, the formula inserted into I3 is not

=H3/H11

Instead, it’s

=H3/H12

Why does H11 become H12? Relative referencing assumes that the formula means, 
“Divide the number in the cell by whatever number is nine cells south of here in 
the same column.” Because H12 has nothing in it, the formula is telling Excel to 
divide by zero, which is a no-no.

The idea is to tell Excel to divide all numbers by the number in H11, not by “what-
ever number is nine cells south of here.” To do this, you work with absolute 

FIGURE 1-12: 
Whoops! 

Incorrect autofill!
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referencing. You show absolute referencing by adding dollar signs ($) to the cell 
ID. The correct formula for I2 is

= H2/$H$11

This line tells Excel to not adjust the column and to not adjust the row when you 
autofill. Figure 1-13 shows the worksheet with the proportions, and you can see 
the correct formula in the formula bar (the area above the worksheet and below 
the Ribbon).

To convert a relative reference into absolute reference format, select the cell 
address (or addresses) you want to convert, press and hold the Fn key, and then 
press F4. Fn+F4 is a toggle that switches among relative reference (H11, for exam-
ple), absolute reference for both the row and column in the address ($H$11), abso-
lute reference for the row-part only (H$11), and absolute reference for the 
column-part only ($H11). You might have to experiment a bit with this — some 
keyboards only require F4 (without Fn).

A Mac shortcut for this is Command+T.

Here’s how you do it on the iPad. After you enter a formula in this type of con-
text, like

= H2/H11

FIGURE 1-13: 
Autofill, based on 

absolute 
referencing.
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iPad suspects what you’re up to and highlights the part you might want to work 
with a bit more — in this case, H11. Tap on that term to pop up a menu. Choose 
Reference Type from that menu to open the Reference Type menu, shown in  
Figure 1-14. Tap the desired reference type — in this case, the first one — and 
then proceed to autofill column I.

FIGURE 1-14: 
Changing from 

relative to 
absolute 

reference on  
the iPad.



CHAPTER 2  Understanding Excel’s Statistical Capabilities      29

Chapter 2
Understanding Excel’s 
Statistical Capabilities

In this chapter, I introduce you to Excel’s statistical functions and data analysis 
tools. If you’ve used Excel, and I’m assuming you have, you’re aware of Excel’s 
extensive functionality, of which statistical capabilities are a subset. You can 

either enter a piece of data into each worksheet cell, instruct Excel to carry out 
calculations on data that reside in a set of cells, or use one of Excel’s worksheet 
functions to work on data. Each worksheet function is a built-in formula that 
saves you the trouble of having to direct Excel to perform a sequence of calcula-
tions. As newbies and veterans know, formulas are the business end of Excel. The 
data analysis tools go beyond the formulas. Each tool provides a set of informative 
results.

IN THIS CHAPTER

 » Working with worksheet functions

 » Creating a shortcut to statistical 
functions

 » Getting an array of results

 » Naming arrays

 » Tooling around with analysis

 » Analyzing on the iPad

 » Using Excel’s Quick Statistics feature
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Getting Started
Many of Excel’s statistical features are built into its worksheet functions. Clicking 
the Excel Insert Function button (it’s labeled fx) opens the Insert Function dialog 
box, which presents a list of Excel’s functions and the capability to search for 
Excel functions. (On the Mac, this button opens the Formula Builder, which is 
pretty much the same thing — except it’s a pane rather than a dialog box, mean-
ing that you can keep it open while you work. On the iPad, fx opens a pop-up menu 
of Excel functions.) Although Excel now provides easier ways to access the work-
sheet functions, the latest version preserves this button and offers additional 
ways to open the Insert Function dialog box. I discuss all of this in more detail in 
a moment.

Figure 2-1 shows the two locations of the Insert Function button. (Note the For-
mula bar as well.) Along with one Insert Function button, the Formula bar is to the 
right of the Name box. All three are just below the Ribbon.

Near the Name box, just to the left of the Insert Function button, you find an X and 
a check mark. The X is the Cancel button, and the check mark is the Enter button. 
Clicking the Enter button is like pressing the Enter key on the keyboard: It tells 

FIGURE 2-1: 
The Function 

library, the Name 
box, the Formula 

bar, the two 
Insert Function 

buttons, the Enter 
button, and the 
Cancel button.
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Excel to perform a computation you’ve typed into a cell. Clicking the Cancel button 
removes anything you’ve typed into a cell — just as long as you haven’t clicked 
that Enter button yet. On the iPad, the X and the check mark are to the right of the 
Formula bar.

Inside the Ribbon, on the Formulas tab, is the Function library. Mac users see a 
similar layout.

The Formula bar is sort of a clone of any cell you select — information entered 
into the Formula bar goes into the selected cell, and information entered into the 
selected cell appears on the Formula bar. You can edit the selected cell’s contents 
in either the cell or in the Formula bar. The Formula bar provides more room, but 
the cell can display text at a larger size if you zoom in on the worksheet.

Figure 2-1, shown earlier, shows Excel with the Formulas tab open. With that tab 
open, you can see the other location for the Insert Function button. Labeled fx, it’s 
on the extreme left end of the Ribbon, in the Function library area. As I mention 
earlier in this section, when you click the Insert Function button, you open the 
Insert Function dialog box. (See Figure 2-2.)

This dialog box enables you to find a function that fits your needs by either typing 
a search term or by scrolling a list of Excel functions.

In addition to clicking the Insert Function button next to the Formula bar, you can 
open the Insert Function dialog box by choosing Formulas | Insert Function from 
the main menu.

FIGURE 2-2: 
The Insert 

Function 
dialog box.
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Because of the way pre-Ribbon versions of Excel were organized, the Insert Func-
tion dialog box used to be extremely useful. Now it’s mostly helpful if you’re not 
sure which function to use or where to find it.

The Function library presents the categories of formulas you can use and makes it 
convenient for you to access them. Clicking a category button in this area opens a 
menu of functions in that category.

Most of the time, I work with statistical functions that are easily accessible from 
the Statistical Functions menu. Sometimes I work with math functions on the 
Math & Trig Functions menu. (You see a couple of these functions later in this 
chapter.) In Chapter 5, I show you how to use a couple of logic functions.

The final selection on each category menu (like the Statistical Functions menu) is 
the Insert Function command. Choosing this option is still another way to open 
the Insert Function dialog box. (The Mac version refers to this dialog box as the 
Formula Builder.)

The Name box is sort of a running record of what you do in the worksheet. Select a 
cell, and the cell’s address appears in the Name box. Click the Insert Function button, 
and the name of the function you selected most recently appears in the Name box.

In addition to its statistical functions, Excel provides a number of data analysis 
tools that you access from the Data tab’s Analysis area.

Setting Up for Statistics
In this section, I show you how to use the worksheet functions and the analysis 
tools.

Worksheet functions
As I point out in the preceding section, the Function library area of the Formulas 
tab shows all categories of worksheet functions.

The steps in using a worksheet function are:

1. Type your data into a data array and select a cell for the result.

2. Select the appropriate formula category and choose a function from its 
pop-up menu.

Completing this step opens the Function Arguments dialog box.
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3. In the Function Arguments dialog box, type the appropriate values for 
the function’s arguments.

Argument is a term from mathematics. It has nothing to do with debates, fights, 
or confrontations. In mathematics, an argument is a value on which a function 
does its work.

4. Click OK to put the result into the selected cell.

Yes, that’s all there is to it.

To give you an example, I explore a function that typifies how Excel’s worksheet 
functions work. This function, SUM, adds up the numbers in cells you specify and 
returns the sum in still another cell you specify. Although adding numbers 
together is an integral part of statistical number-crunching, SUM is not in the Sta-
tistical category. It is, however, a typical worksheet function, and it shows a 
familiar operation.

Here, step by step, is how to use SUM:

1. Enter your numbers into an array of cells and select a cell for the result.

In this example, I’ve entered 45, 33, 18, 37, 32, 46, and 39 into cells C2 through 
C8, respectively, and selected C9 to hold the sum.

2. Select the appropriate formula category and choose the function from its 
pop-up menu.

This step opens the Function Arguments dialog box.

I chose Formulas | Math & Trig and scrolled down to find and choose SUM.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

Excel guesses that you want to sum the numbers in cells C2 through C8 and 
identifies that array in the Number1 box. Excel doesn’t keep you in suspense: 
The Function Arguments dialog box shows the result of applying the function. 
In this example, the sum of the numbers in the array is 250. (See Figure 2-3.)

4. Click OK to put the sum into the selected cell.

Note a couple of points. First, as Figure 2-3 shows, the Formula bar holds

=SUM(C2:C8)

This formula indicates that the value in the selected cell equals the sum of the 
numbers in cells C2 through C8.
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After you become familiar with a worksheet function and its arguments, you can 
bypass the menu and type the function directly into the cell or into the Formula 
bar, beginning with an equal sign (=). When you do, Excel opens a helpful menu 
as you type the formula. (See Figure  2-4.) The menu shows possible formulas 
beginning with the letter(s) you type, and you can choose one by double- 
clicking it.

FIGURE 2-3: 
Using SUM.

FIGURE 2-4: 
As you type a 

formula, Excel 
opens a helpful 

menu.
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Another noteworthy point is the set of boxes in the Function Arguments dialog 
box. (Refer to Figure 2-3.) In the figure, you see just two boxes: Number1 and 
Number2. The data array appears in Number1 — what’s Number2 for?

The Number2 box allows you to include an additional argument in the sum. And it 
doesn’t end there: Click in the Number2 box, and the Number3 box appears. Click 
in the Number3 box, and the Number4 box appears — and on and on. The limit is 
255 boxes, with each box corresponding to an argument. A value can be another 
array of cells anywhere in the worksheet, a number, an arithmetic expression that 
evaluates to a number, a cell ID, or a name you have attached to a range of cells. 
(Regarding that last one: Read the later section “What’s in a name? An array of 
possibilities.”) As you type values, the Function Arguments dialog box shows the 
updated sum. Clicking OK puts the updated sum into the selected cell.

You won’t find this multi-argument capability on every worksheet function. Some 
are designed to work with just one argument. For the ones that work with multiple 
arguments, however, you can incorporate data that reside all over the worksheet. 
Figure 2-5 shows a worksheet with a Function Arguments dialog box that includes 
data from two arrays of cells, two arithmetic expressions, and one cell. Notice the 
format of the function in the Formula bar  — a comma separates successive 
arguments.

If you select a cell in the same column as your data and just below the last data 
cell, Excel correctly guesses the data array you want to work on. Excel doesn’t 
always guess what you want to do with that array, however. Sometimes when 
Excel does guess, its guess is incorrect. When either of those things happens, it’s 
up to you to enter the appropriate values into the Function Arguments dialog box.

FIGURE 2-5: 
Using SUM with 
five arguments.
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Quickly accessing statistical functions
In this section, I show you how to create a shortcut to Excel’s statistical 
functions.

You can get to Excel’s statistical functions by choosing Formulas | More Functions 
| Statistical and then choosing from the resulting pop-up menu. (See 
Figure 2-6.)

Although Excel has buried the statistical functions several layers deep, you can use 
a handy technique to make them as accessible as any of the other categories — 
just add them to the Quick Access toolbar in the upper left corner.

To do this, choose Formulas | More Functions from the main menu and then 
right-click the Statistical option. From the pop-up menu that appears, pick the 
first option, Add to Quick Access Toolbar. (See Figure 2-7.) Doing this adds a but-
ton to the Quick Access toolbar. Clicking the new button’s down arrow opens the 
pop-up menu of statistical functions. (See Figure 2-8.)

FIGURE 2-6: 
Accessing Excel’s 

statistical 
functions.
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Here’s how to put Statistical formulas into the Quick Access toolbar on the Mac. 
Choose Excel | Preferences | Ribbon & Toolbar and then click the Quick Access 
Toolbar tab. On the Choose Commands From menu, choose All Commands. Scroll 
down the box on the left, choose Statistical and click > to move Statistical to the 
box on the right. Click Save to put the Statistical icon into the Quick Access toolbar 
in the green area above the ribbon.

FIGURE 2-7: 
Adding the 

statistical 
functions to the 

Quick Access 
toolbar.

FIGURE 2-8: 
Accessing the 

Statistical 
Functions menu 

from the Quick 
Access toolbar.
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From now on, whenever I deal with a statistical function, I assume you’ve created 
this shortcut so that you can quickly open the menu of statistical functions. The 
next section provides an example.

On the iPad, no shortcut is necessary. To access statistical functions, it’s just For-
mulas | Statistical.

Remember that on the iPad the Statistical icon is to the immediate right of Math 
& Trig.

Array functions
Most of Excel’s built-in functions are formulas that calculate a single value (like 
a sum) and put that value into a worksheet cell. Excel does have another type of 
function, however: It’s called an array function because it calculates multiple val-
ues and puts those values into an array of cells rather than into a single cell. I refer 
to this array as the output array.

This is where Microsoft 365 and Office 2019 part company. In Office 2019 and in 
earlier versions of Excel, here’s how you work with an array function: Select the 
range of cells, which will be the output array, open the array function’s dialog box, 
fill in the appropriate values, and then press the key combination Ctrl+Shift+Enter 
(or Ctrl+Shift+Return or Command+Shift+Return on the Mac) to close the dialog 
box and populate the output array. Readers of previous editions of this book might 
recall my frequent admonitions and warnings about that key combination when-
ever I talked about array functions. You can still select the output array and use 
the key combination in Microsoft 365, but it’s no longer necessary.

In Microsoft 365 (Windows, Mac, and iPad), you select only one cell, supply the 
appropriate information for the function, and just press Enter or click OK. Excel 
knows where the rest of the output array is and puts the computed values into its 
cells. It’s as if the computed values spilled over from the selected cell into the rest 
of the output array — so Microsoft refers to this process as spilling.

Throughout this book, I describe the Microsoft 365 procedure whenever I discuss 
an array function.

If you’re using Office 2019 (or an earlier version) of Excel, select the entire output 
array, supply the information that the function wants, and press Ctrl+Shift+Enter 
(Ctrl+Shift+Return or Command+Shift+Return on the Mac). I had to give you one 
last warning, for old times’ sake!
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A good example of an array function is FREQUENCY (and it’s an Excel statistical 
function, too). Its job is to summarize a group of scores by showing how the scores 
fall into a set of intervals that you specify. For example, given the scores

77, 45, 44, 61, 52, 53, 68, 55

and the intervals

50, 60, 70, 80

FREQUENCY shows how many are less than or equal to 50 (2, in this example), how 
many are greater than 50 and less than or equal to 60 (that’s 3), and so on. The 
number of scores in each interval is called a frequency. A table of the intervals and 
the frequencies is called a frequency distribution.

Here’s an example of how to use FREQUENCY in Microsoft 365:

1. Enter the scores into an array of cells.

Figure 2-9 shows a group of scores in cells B2 through B16.

2. Enter the intervals into an array.

I’ve put the intervals in C2 through C9.

3. Select a cell to start the output array.

I’ve put Frequency as the label in D1, so I select D2 to start the output array.

4. From the Statistical Functions menu, select FREQUENCY to open the 
Function Arguments dialog box.

I use the shortcut I installed on the Quick Access toolbar to open this menu 
and select FREQUENCY.

FIGURE 2-9: 
Working with 
FREQUENCY.
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5. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

I begin with the Data_array box. In this box, I enter the cells that hold the 
scores. In this example, that’s B2:B16. (I’m assuming you know Excel well 
enough to know how to do this in several ways.)

Next, I identify the intervals array. FREQUENCY refers to intervals as bins and 
holds the intervals in the Bins_array box. In this example, C2:C9 goes into the 
Bins_array box. After I identify both arrays, the Insert Function dialog box 
shows the frequencies inside a pair of curly brackets: {}.

6. Click OK to close the Function Arguments dialog box and put the values 
in the output array.

After you close the Function Arguments dialog box, the frequencies spill into 
the appropriate cells, as Figure 2-10 shows.

If you select the first cell in the populated output array, the formula appears on 
the Formula bar in the usual way. If you select any other cell, the formula appears 
slightly grayer on the Formula bar.

On the iPad, you follow the same steps, but you complete some of them in a dif-
ferent way:

1. Enter the scores into an array of cells.

No change. The numbers are in cells B2 through B16.

2. Enter the intervals into an array.

Again, nothing different. The intervals are in C2 through C9.

FIGURE 2-10: 
The finished 
frequencies.
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3. Select a cell to start the output array.

I tap cell D2.

4. From the Statistical Functions menu, select FREQUENCY to put the 
FREQUENCY formula into the Formula bar.

This step highlights iPad’s easier access to statistical functions. You just choose 
Formulas | Statistical and then select FREQUENCY. This step also shows the 
absence of dialog boxes from Excel on the iPad.

5. Use the formula in the Formula bar to enter the values of the arguments.

In the Formula bar, the formula has the first argument, data_array, high-
lighted. (See Figure 2-11.) I select B2 through B16 to enter those cells into the 
formula’s first argument.

Next, I tap bins_array in the formula and select C2 through C9.

If you find it difficult to select C2 and drag downward, select C9 and drag 
upward.

6. Press Return to put the values into the output array.

What’s in a name? An array of possibilities
As you get more into Excel’s statistical features, you work increasingly with for-
mulas that have multiple arguments. Oftentimes, these arguments refer to arrays 
of cells, as in the examples I describe earlier in this chapter.

FIGURE 2-11: 
Working with 

FREQUENCY on 
the iPad.
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If you attach meaningful names to these arrays, it helps you keep straight what 
you’re doing. Also, if you return to a worksheet after not working on it for a while, 
meaningful array names can help you quickly get back into the swing of things. 
Another benefit: If you have to explain your worksheet and its formulas to others, 
meaningful array names are tremendously helpful.

Excel gives you an easy way to attach a name to a group of cells (but not on the 
iPad). In Figure 2-12, column C is named Revenue_Millions, indicating “revenue 
in millions of dollars.” As it stands, that just makes it a bit easier to read the col-
umn. If I explicitly tell Excel to treat Revenue_Millions as the name of the array 
of cells C2 through C13, however, I can use Revenue_Millions whenever I refer to 
that array of cells.

Why did I use Revenue_Millions and not Revenue (Millions) or Revenue In Mil-
lions or Revenue: Millions? Because Excel doesn’t like blank spaces or symbols in 
its names — that’s why. In fact, here are four rules to follow when you supply a 
name for a range of cells. The name

 » Must begin with an alphabetic character — a letter rather than a number or a 
punctuation mark.

 » Must be unique within the workbook.

 » Cannot contain spaces or symbols (as I just mentioned) — use an underscore 
to denote a space between words in the name.

 » Cannot duplicate any cell reference in the worksheet.

Otherwise, Excel gives you up to 255 characters to get creative with the name.

FIGURE 2-12: 
Defining names 

for arrays of cells.
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Here’s how to define a name:

1. Add a descriptive name at the top of a column (or to the left of a row) you 
want to name.

(Refer to Figure 2-10.)

2. Select the range of cells you want to name.

In this example, that’s cells C2 through C13. Why not include C1? I explain in a 
second.

3. Right-click the selected range.

This step opens the pop-up menu shown in Figure 2-13.

4. From this pop-up menu, choose Define Name.

This selection opens the New Name dialog box. (See Figure 2-14.) As you can 
see, Excel knows that Revenue_Millions is the name of the array and that 
Revenue_Millions refers to cells C2 through C13. When presented with a 
selected range of cells to name, Excel looks for a nearby name — just above a 
column or just to the left of a row. If no name is present, you get to supply one 
in the New Name dialog box. (You can also open the New Name dialog box by 
choosing Formulas | Define Name.)

FIGURE 2-13: 
Right-clicking a 

selected cell 
range opens this 

pop-up menu.
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When you select a range of cells, like a column, with a name at the top, you can 
include the cell with the name in it and Excel attaches the name to the range. I 
strongly advise against doing this, however. Why? If I select C1 through C13, the 
name Revenue_Millions refers to cells C1 through C13, not C2 through C13. In 
that case, the first value in the range is text, and the others are numbers.

For a formula such as SUM (or SUMIF or SUMIFS, which I discuss next), this 
doesn’t make a difference: In those formulas, Excel just ignores values that 
aren’t numbers. If you have to use the whole array in a calculation, however, it 
makes a huge difference: Excel thinks the name is part of the array and tries to 
use it in the calculation. You see this in the next section, on creating your own 
array formulas.

5. Click OK.

Excel attaches the name to the range of cells.

Now I have the convenience of using the name in a formula. Here, selecting a cell 
(like C14) and entering the SUM formula directly into C14 opens the boxes shown in 
Figure 2-15.

As the figure shows, the boxes open as you type. Selecting Revenue_Millions and 
pressing the Tab key fills in the formula in a way that Excel understands. You have 
to supply only the close parenthesis (see Figure 2-16) and press Enter in order to 
see the result.

Using the named array, then, the formula is

=SUM(Revenue_Millions)

which is more descriptive than

=SUM(C2:C13)

FIGURE 2-14: 
The New Name 

dialog box.
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A couple of other formulas show just how convenient this naming capability can 
be. These formulas, SUMIF and SUMIFS, add a set of numbers if specific conditions 
in one cell range (SUMIF) or in more than one cell range (SUMIFS) are met.

To take full advantage of naming, I name my table’s column A (Year) and column 
B (Region) in the same way I named column C.

When you define a name for a cell range like B2:B13 in this example, beware: Excel 
can be quirky when the cells hold names. It might guess that the name in the 
uppermost cell is the name you want to assign to the cell range. In this case, Excel 
guesses North for the name rather than Region. If that happens, you make the 
change in the New Name dialog box.

FIGURE 2-15: 
Entering a 

formula directly 
into a cell opens 

these boxes.

FIGURE 2-16: 
Completing the 

formula.
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To keep track of the names in a worksheet, choose Formulas | Name Manager 
from the main menu to open the Name Manager box, shown in Figure 2-17. (The 
nearby buttons in the Defined Names area of the Ribbon — Define Name, Use in 
Formula, and Create from Selection — come in handy, so keep them in mind for 
the future.)

Next, I sum the data in column C, but only for the North region. That is, I consider 
a cell in column C only if the corresponding cell in column B contains North. To do 
this, I follow these steps:

1. Select a cell for the formula result.

My selection here is C15.

2. Choose Formulas | Math & Trig.

3. From the pop-up menu that appears, choose SUMIF.

This selection opens the Function Arguments dialog box, shown in Figure 2-18.

SUMIF has three arguments. The first, Range, is the range of cells to evaluate 
for the condition to include in the sum (North, South, East, or West, in this 
example). The second, Criteria, is the specific value in the range (North, for this 
example). The third, Sum_range, holds the values I sum.

FIGURE 2-17: 
Managing the 

Defined Names in 
a worksheet.
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4. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

Here’s where another Defined Names button comes in handy. In that Ribbon 
area, click the down arrow next to Use in Formula to open the drop-down list 
shown in Figure 2-19.

Choosing from this list fills in the Function Arguments dialog box, as shown in 
Figure 2-20. I had to type North into the Criteria box. Excel adds the double 
quotes.

5. Click OK.

The result appears in the selected cell. In this example, it’s 78.

In the Formula bar, this line appears:

=SUMIF(Region,"North", Revenue_Millions)

If you choose to, you can type the line exactly that way into the Formula bar, with-
out using the dialog box or the drop-down list. When you don’t use the dialog box, 
you have to supply the double quotes around the criteria.

FIGURE 2-18: 
The Function 

Arguments dialog 
box for SUMIF.

FIGURE 2-19: 
The Use in 

Formula 
drop-down list.
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The formula in the Formula bar is easier to understand than

= SUMIF(B2:B13,"North", C2:C13)

isn’t it?

Incidentally, the same cell range can be both the Range and the Sum_range. For 
example, to sum just the cells for which Revenue_Millions is less than 25, 
you’d use

=SUMIF(Revenue_Millions, "< 25", Revenue_Millions)

The second argument (Criteria) is always in double quotes.

What about SUMIFS? That one is useful if you want to find the sum of revenues for 
North but only for the years 2006 and 2007. Follow these steps to use SUMIFS to 
find this sum:

1. Select a cell for the formula result.

The selected cell is C17.

2. Choose Formulas | Math & Trig.

3. From the pop-up menu that appears, choose SUMIFS.

This step opens the Function Arguments dialog box.

4. In the Function Arguments dialog box, enter the appropriate values for 
the arguments, as shown in Figure 2-21.

Notice that, in SUMIFS, the Sum Range argument appears first. In SUMIF, 
however, it appears last.

Note that the formula in the Formula bar is now

=SUMIFS(Revenue_Millions,Year,"<2008",Region,"North")

FIGURE 2-20: 
Completing the 

Function 
Arguments dialog 

box for SUMIF.
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5. Click OK.

The answer, 46, appears in the selected cell.

With unnamed arrays, the formula would have been

=SUMIFS(C2:C13,A2:A13,"<2008",B2:B13,"North")

which seems much harder to comprehend.

A defined name involves absolute referencing. (See Chapter 1.) Therefore, if you 
try to autofill from a named array, you’ll be in for an unpleasant surprise: Rather 
than autofill a group of cells, you copy a value over and over again.

Here’s what I mean. Suppose you assign the name Series_1 to A2:A11 and Series_2 
to B2:B11. In A12, you calculate SUM(Series_1). Because you’re clever, you figure 
you’ll just drag the result from A12 to B12 to calculate SUM(Series_2). What do 
you find in B12? SUM(Series_1) — that’s what.

Excel does not treat array names as case-sensitive. If the named array is Test, for 
example, SUM(Test), SUM(test), and SUM(tEST) all give you the same result.

You can’t name an array in Excel on the iPad. If you name an array in a Windows 
or Mac Excel spreadsheet, however, and your Microsoft 365 account includes the 
iPad, you can open that spreadsheet on the iPad and the named array works just 
fine.

FIGURE 2-21: 
The completed 

Function 
Arguments dialog 
box for SUMIFS.
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Creating Your Own Array Formulas
In addition to Excel’s built-in array formulas, you can create your own. (Again, 
not on the iPad.) To help things along, you can incorporate named arrays.

Figure 2-22 shows two named arrays, X and Y, in columns C and D, respectively. 
X refers to C2 through C5 (not C1 through C5), and Y refers to D2 through D5 (not 
D1 through D5). XY is the column header for column F.  Each cell in column F 
stores the product of the corresponding cell in column C and the corresponding 
cell in column D.

An easy way to enter the products, of course, is to set F2 equal to C2*D2 and then 
autofill the remaining applicable cells in column F.

Just to illustrate array formulas, though, follow these steps to work on the data in 
the worksheet (refer to Figure 2-22):

1. Select the cell to start the output array.

That would be F2. (Figure 2-21 shows the selected cell.)

2. Into the selected cell, type the formula.

The formula here is =X * Y

3. Press Enter.

The answers appear in F2 through F5, as Figure 2-23 shows.

FIGURE 2-23: 
The results of the 

array formula 
=X * Y.

FIGURE 2-22: 
Two named 

arrays and an 
array formula.
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When you name a range of cells, make sure that the named range does not include 
the cell with the name in it. If it does, an array formula like {=X * Y} tries to mul-
tiply the letter X by the letter Y to produce the first value, which is impossible and 
results in the exceptionally ugly #VALUE! error.

Using data analysis tools
Excel has a set of sophisticated tools for data analysis. They reside in the Analysis 
ToolPak. This ToolPak isn’t available for the iPad, but a similar package, the 
XLMiner Analysis ToolPak, is. I mention it in the next section.

Table 2-1 lists the ToolPak tools I cover. (The one I don’t cover, Fourier Analysis, 
is extremely technical.) Some of the terms in the table may be unfamiliar to you, 
so I define them throughout this book.

TABLE 2-1	 Excel’s Data Analysis Tools
Tool What It Does

Anova: Single Factor Performs analysis of variance for two or more samples.

Anova: Two-Factor with 
Replication

Performs analysis of variance with two independent variables, and multiple obser-
vations in each combination of the levels of the variables.

Anova: Two-Factor 
without Replication

Performs analysis of variance with two independent variables, and one observa-
tion in each combination of the levels of the variables; It’s also a repeated mea-
sures analysis of variance.

Correlation With more than two measurements on a sample of individuals, calculates a matrix 
of correlation coefficients for all possible pairs of the measurements.

Covariance With more than two measurements on a sample of individuals, calculates a matrix 
of covariances for all possible pairs of the measurements.

Descriptive Statistics Generates a report of central tendency, variability, and other characteristics of val-
ues in the selected range of cells.

Exponential Smoothing In a sequence of values, calculates a prediction based on a preceding set of values 
and on a prior prediction for those values.

F-Test Two-Sample for 
Variances

Performs an F-test to compare two variances.

Histogram Tabulates individual and cumulative frequencies for values in the selected range 
of cells.

Moving Average In a sequence of values, calculates a prediction which is the average of a specified 
number of preceding values.

(continued)
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The ToolPak is an add-in. To use it, you first have to load it into Excel. To start off 
that process (in the Windows version), choose File | Options from the main menu. 
Doing this opens the Excel Options dialog box. From there, follow these steps:

1. In the Excel Options dialog box, select Add-Ins from the navigation menu 
on the left.

Oddly enough, this step opens a list of add-ins.

Near the bottom of the list, you see a drop-down list labeled Manage.

2. From this list, select Excel Add-Ins, if it’s not already selected.

3. Click Go.

This step opens the Add-Ins dialog box. (See Figure 2-24.) The items in your 
dialog box are probably different from the ones in mine. That’s okay.

4. Select the check box next to the Analysis ToolPak option as well as the 
check box next to the Solver Add-In option and then click OK.

When Excel finishes loading the ToolPak and the Solver add-ins, you find the Data 
Analysis button and the Solver button in the Analyze area of the Data tab. It’s all 
the way on the right.

The installation procedure for the Analysis ToolPak on the Mac is much simpler 
than the one for Windows.

Tool What It Does

Random Number 
Generation

Provides a specified amount of random numbers generated from one of seven 
possible distributions.

Rank and Percentile Creates a table that shows the ordinal rank and the percentage rank of each value 
in a set of values.

Regression Creates a report of the regression statistics based on linear regression through a 
set of data containing one dependent variable and one or more independent 
variables.

Sampling Creates a sample from the values in a specified range of cells.

t-Test: Two Sample Provides three t-test tools that test the difference between two means: One 
assumes equal variances in the two samples; another assumes unequal variances 
in the two samples; the third assumes matched samples.

z-Test: Two Sample for 
Means

Performs a two-sample z-test to compare two means when the variances are 
known.

TABLE	2-1	(continued)
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To begin, choose Tools | Excel Add-ins from the main menu. (Figure 2-25 shows 
this menu choice.)

This opens the Add-Ins dialog box. (See Figure 2-26.) Select the check box next to 
Analysis ToolPak and the checkbox next to Solver Add-In then click OK. That’s it. 
Data Analysis. . . and Solver. . . then appear as choices on the Tools menu.

FIGURE 2-24: 
The Add-Ins 
dialog box.

FIGURE 2-25: 
The Tools | Excel 

Add-ins menu 
choice on 
the Mac.
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Follow these general steps for using a ToolPak data analysis tool:

1. Enter your data into an array.

2. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. In the Data Analysis dialog box, select the data analysis tool you want to 
work with.

4. Click OK (or just double-click the selection) to open the dialog box for the 
selected tool.

5. In the tool’s dialog box, enter the appropriate information.

I know this step is vague, but each tool is different.

6. Click OK to close the dialog box and see the results.

Here’s an example to get you accustomed to using these tools. In this example, I 
put the Descriptive Statistics tool through its paces. This tool calculates a number 
of statistics that summarize a set of scores.

1. Enter your data into an array.

Figure 2-27 shows an array of numbers in cells B2 through B9, with a column 
header in B1. The array is on a worksheet tab called Descriptive Statistics.

2. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. Click Descriptive Statistics and then click OK (or just double-click 
Descriptive Statistics) to open the Descriptive Statistics dialog box.

FIGURE 2-26: 
The Add-Ins 

dialog box on 
the Mac.
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4. Identify the data array.

In the Input Range box, enter the cells that hold the data. In this example, that’s 
B1 through B9. The easiest way to do this is to move the cursor to the top cell 
(B1), press the Shift key, and click in the bottom cell (B9). That puts the absolute 
reference format $B$1:$B$9 into the input range field.

5. Select the Columns radio button to indicate that the data are organized 
by columns.

6. Select the Labels in First Row check box because the input range includes 
the column heading.

7. Select the New Worksheet Ply radio button, if it isn’t already selected.

This step tells Excel to create a new tabbed sheet within the current worksheet 
and to then send the results to the newly created sheet.

8. Select the Summary Statistics check box and leave the others deselected.

9. Click OK.

The new tabbed sheet (ply) opens, displaying statistics that summarize the 
data. Figure 2-28 shows the new ply, after you widen column A.

For now, I don’t tell you the meaning of each individual statistic in the Summary 
Statistics display. I leave that for Chapter  7, where I delve more deeply into 
descriptive statistics.

FIGURE 2-27: 
Working with the 

Descriptive 
Statistics tool.
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Additional data analysis tool packages
Two other data analysis tool packages are available for Excel. The good news is 
that both work on Windows, Mac, and iPad.

One is called the XLMiner Analysis ToolPak (from Frontline Systems) and it does 
everything the original Toolpak does, plus an analysis called Logistic Regression. 
Rather than take you through this package in every chapter, I leave it until 
 Chapter 21 when I cover Logistic Regression — and the XLMiner Analysis ToolPak 
provides the best way to get the job done.

I use the iPad as an opportunity to explore the other package, StatPlus (from Ana-
lystSoft). This way, you get a deep dive into another toolset, and I don’t have to 
cover every combination of every platform (Windows, Mac, iPad) with every tool 
package (Analysis Toolpak, XLMiner ToolPak, StatPlus) in every chapter!

It turns out that the free version of StatPlus — the one I work with in this book —  
has some of the tools the Toolpak provides and also has some goodies the Toolpak 
lacks. That makes it very much worth having. Luckily for you, this add-in is easy 
to set up and to work with. All you have to do to add it to Excel on your iPad is tap 
Insert | Add-Ins | See All. In the Office Add-Ins box that appears, scroll down to 
StatPlus and tap Add.

FIGURE 2-28: 
The output of the 

Descriptive 
Statistics tool.
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When you want to use a StatPlus tool on the iPad, follow these steps:

1. Enter your data into an array.

It’s a good idea to name the tab of the worksheet that contains the array.

2. Tap Insert | Add-ins | StatPlus to open the Add-ins box.

If you’ve used StatPlus recently, its icon appears immediately under Recently 
Used Add-ins. If it doesn’t, find it in My Add-Ins. Tapping StatPlus opens the 
StatPlus pane on the right side of the screen.

3. In the StatPlus panel, tap New Analysis to open the Commands box.

4. Hunt down the analysis tool you want.

The Commands box is organized into categories, so you might have to tap a 
couple of categories before you find the tool you’re looking for.

5. Tap the name of the tool.

6. Enter the values into the boxes on the StatPlus panel.

From the drop-down menu for the Columns For box, select the tab where your 
data lives. If your spreadsheet is open to that tab, its name already appears in 
the Columns For box.

In the Headers box, you can choose either Name in the first row or no headers.

For the next few steps, keep in mind that the tool you use determines the 
number of Variables boxes you work with.

7. To add an array to a Variables box, select it on the spreadsheet and then 
tap the little three-cells-and-a-plus-sign icon for the appropriate 
Variables box.

This step opens the Variables pane.

8. Tap Add in that pane to return to the previous pane.

The selected range is in the Variables box.

9. Tap Run.

StatPlus opens a new worksheet with the results.

Figure 2-29 shows the StatPlus pane after Steps 1–5 for the descriptive statistics 
example in the preceding section.

Figure 2-30 shows the results of the analysis. Notice that the title at the top shows 
the mean plus-or-minus the standard deviation.



58      PART 1  Getting Started with Statistical Analysis with Excel: A Marriage Made in Heaven

Accessing Commonly Used Functions
Need quick access to a few commonly used statistical functions? You can get to 
AVERAGE, MIN (minimum value in a selected cell range) and MAX (maximum value 
in a selected range) by clicking the down arrow next to the AutoSum button on the 
left side of the Formulas tab. Clicking this down arrow also gets you to the Math-
ematical functions SUM and COUNT NUMBERS (counts the numerical values in a cell 
range).

FIGURE 2-29: 
The StatPlus 

pane, with 
entered values 

for a Descriptive 
Statistics analysis.

FIGURE 2-30: 
The results of the 

Descriptive 
Statistics 

analysis —  
 compare with the 

results shown in 
Figure 2-28.
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The AutoSum button is labeled Σ. Figure 2-31 shows you not only exactly where it 
is but also the menu opened by its down arrow. For some reason, it’s in the Editing 
area of the Home tab. Another AutoSum button (with the same menu) is in the 
Function library of the Formulas tab.

By the way, if you just click the Σ button and not the down arrow, you get SUM.

The last selection on that menu is yet another way to open the Insert Function 
dialog box.

One nice thing about using the Σ menu: It eliminates a step. When you select a 
function, you don’t have to select a cell for the result — just select the cell range, 
and the function inserts the value in a cell immediately after the range.

The New Analyze Data Tool
The Analyze Data tool is a new feature for Windows and Mac. In your worksheet, 
select cells with data and then choose Home | Analyze Data to open the Analyze 
Data pane. Figure 2-32 shows the pane after I selected the data in an example 
from Chapter  1. (I removed the totals and proportions, although that’s not 
necessary.)

The pane offers a number of suggestions, including charts (Excel’s name for 
graphs) to visualize the data as well as a possible correlation between data in two 
of the columns (the years 1990 and 2001). I have more to say about charts in 
Chapter 3. (Correlation? What’s that? Chapter 15 tells you all about it.)

FIGURE 2-31: 
The Home Σ 

button and the 
menu that 

clicking its down 
arrow opens.
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Data from Pictures!
This new feature is for non-Windows only. (About time, eh?) Here, I describe the 
iPad version. You use the iPad camera to take a picture of a data table that appears 
on a printed page and then, through the magic of OCR (optical character recogni-
tion), Excel extracts the data in the picture and puts it into a spreadsheet.

To start collecting data, follow these steps on your iPad:

1. Find a printed page that presents a data table.

For this exercise, I use Table 14-2 of this book.

2. Flatten out the page as much as possible.

This increases the OCR’s accuracy.

3. Select a cell in the spreadsheet where you want the data table to begin.

4. Choose Insert | Data from Picture to activate the iPad camera.

5. Take a picture of the data table.

Important advice: I hold the iPad in Portrait mode so that the white button is at 
the bottom of the screen. If I hold it in Landscape mode (which is probably the 
way you hold your iPad when you use it for Excel), I end up with gobbledygook. 
Trust me on this one.

FIGURE 2-32: 
The Analyze Data 

tool at work.
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6. Adjust the white rectangle to crop out everything but the data.

This table has some statistics calculated in the bottom rows. In this example, I 
crop out those rows and then recalculate the statistics after the data are in the 
spreadsheet. It’s a helpful check on the accuracy of the OCR — if the recalcu-
lated statistics don’t match up with the printed version, something is obviously 
amiss.

7. Tap Confirm.

After a few seconds, the image of the table appears in the upper half of the 
screen; and the data as it will appear in Excel, in the lower half. Figure 2-33 
shows the inaccuracy of the OCR with respect to decimals. You can tap the X in 
the upper left corner to discard the picture and start again, if you like.

8. When you’re satisfied with the data table, tap Insert.

If the accuracy isn’t perfect (and it rarely is), two buttons appear — one labeled 
Open Anyway and one labeled Review. Review is more of a hassle than it’s 
worth — it’s easier to review and make corrections after the numbers are in 
the spreadsheet. (See Step 9.) My rule of thumb: If the cells are properly 
aligned and most of the data looks okay, tap Open Anyway to put the data in 
the spreadsheet. If not, tap the X in the upper left corner and restart the 
procedure.

FIGURE 2-33: 
An intermediate 

result of Data 
from Picture: The 
image of the data 
and the data as it 

will appear in 
Excel.
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9. Compare the data in the spreadsheet with the data on the printed page. 
Correct as necessary.

Do not omit this step. I pay close attention to decimals because the OCR 
sometimes misses the decimal point. As I point out in Step 5, recalculating 
statistics is a helpful check of the OCR accuracy.

In the Mac version of Data from Picture, you take the picture with an iPhone con-
figured to use Continuity Camera; the option is called Picture from Clipboard. The 
Mac also gives you the option to choose a picture from your files.
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Chapter 3
Show-and-Tell: 
Graphing Data

The visual presentation of data is extremely important in statistics. Visual 
presentation enables you to discern relationships and trends you might not 
see if you look only at numbers. Visual presentation helps in another way: 

It’s valuable for presenting ideas to groups and making them understand your 
point of view.

Graphs come in many varieties. In this chapter, I explore the types of graphs you 
use in statistics and explain when it’s advisable to use them. I also show you how 
to use Excel to create those graphs.

Why Use Graphs?
Suppose you have to make a pitch to a Congressional committee about commercial 
space revenues in the early 1990s.

Which would you rather present: the data in Table 3-1 or the graph in Figure 3-1, 
which shows the same data? (The data, by the way, is from the US Department of 
Commerce, via the Statistical Abstract of the US.)

IN THIS CHAPTER

 » Introducing graphs

 » Working with Excel’s graphics 
capabilities

 » Adding Sparklines
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Which one would have a greater and more lasting impact? Although the table is 
certainly informative, most people would argue that the graph gets the point 
across better and more memorably. (Eyes that glaze over when looking at num-
bers often shine brighter when looking at pictures.)

The graph shows you trends you might not see as quickly on the table. (Satellite 
services rose fastest. Commercial launches, not so much.) Bottom line: Tables are 
good; graphs are better.

Graphs help bring concepts to life that might otherwise be difficult to understand. 
In fact, I do that throughout the book. I illustrate points by, well, illustrating 
points!

TABLE 3-1	 US Commercial Space Revenues 1990–1994 (in Millions  
of Dollars)

Industry 1990 1991 1992 1993 1994

Commercial Satellites Delivered 1,000 1,300 1,300 1,100 1,400

Satellite Services 800 1,200 1,500 1,850 2,330

Satellite Ground Equipment 860 1,300 1,400 1,600 1,970

Commercial Launches 570 380 450 465 580

Remote Sensing Data 155 190 210 250 300

Commercial R&D Infrastructure 0 0 0 30 60

Total 3,385 4,370 4,860 5,295 6,640

Data from U.S. Department of Commerce

FIGURE 3-1: 
Graphing the 

data in Table 3-1.



CHAPTER 3  Show-and-Tell: Graphing Data      67

Examining Some Fundamentals
First of all, Excel uses the word chart instead of graph. Like the graph, er, chart in 
Figure 3-1, most chart formats have a horizontal axis and a vertical axis. Several 
other formats (pie, treemap, and sunburst), which I show you later in this chap-
ter, do not. Neither the radar chart nor the box-and-whisker chart (which also 
appear in this chapter) has a horizontal axis.

By convention, the horizontal axis is also called the x-axis, and the vertical axis is 
also called the y-axis.

Also, by convention, what goes on the horizontal axis is called the independent 
variable, and what goes on the vertical axis is called the dependent variable. One of 
Excel’s chart formats reverses that convention, and I bring that to your attention 
when I cover it. Just to give you a heads-up, Excel calls that reversed-axis format 
a bar chart. You might have seen the chart shown in Figure 3-1 referred to as a bar 
chart. So have I. (Actually, I’ve seen it referred to as a bar graph, but never mind 
that.) Excel calls Figure 3-1 a column chart, so I say columns from now on.

Getting back to independent and dependent, these terms imply that changes in the 
vertical direction depend (at least partly) on changes in the horizontal direction.

Another fundamental principle of creating a chart: Don’t wear out the viewer’s 
eyes! If you put too much into a chart in the way of information or special effects, 
you defeat the whole purpose of the chart.

For example, in Figure 3-1, I had to make some choices about filling in the col-
umns. Color coded columns would have been helpful, but the page you’re looking 
at shows only black, white, and shades of gray.

A lot of chart creation skill comes with experience, and you just have to use your 
judgment. In this case, my judgment came into play with the horizontal gridlines. 
In most charts, I prefer not to have them. Here, they seem to add structure and 
help the viewer figure out the dollar value associated with each column. But then 
again, that’s just my opinion.
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Gauging Excel’s Graphics (Chartics?) 
Capabilities

As I mention in the preceding section, the chart in Figure 3-1 is a column chart. 
It’s one of many types of charts you can create with Excel. Of all the graphics pos-
sibilities Excel provides, however, only a few are useful for statistical work. Those 
are the ones I cover in this chapter.

In addition to the column chart, I show you how to create pie charts, bar charts, 
line charts, and scatterplots.

When you create a chart, you insert it into a spreadsheet. This immediately clues 
you in that all chart creation tools are in the Charts area of the Insert tab. (See 
Figure 3-2.)

To insert a chart, follow these steps:

1. Enter your data into a worksheet.

2. Select the data that go into the chart.

3. In the Charts area of the Insert tab, select Recommended Charts.

The Insert Chart dialog box opens. This dialog box presents Excel’s best 
guesses for the kind of chart that captures your data. Choose one, and Excel 
creates a chart in the worksheet.

4. Modify the chart.

Click on the chart, and Excel adds a Chart Design contextual tab and a Format 
contextual tab to the Ribbon. These tabs allow you to make all kinds of 
changes to the chart. You can also double-click on a chart element (like an axis 
or a data point) to open a task pane on the right side of the screen. The task 
pane enables you to modify the element. If you keep the task pane open and 
click on another element, the task pane changes to accommodate the newly 
clicked element and the possible modifications you can make.

It’s that simple. (Charts seem to get easier with each new version of Excel.) The 
next section shows what I mean.

FIGURE 3-2: 
The Charts area 

of the Insert tab.
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By the way, here’s one more important concept about Excel graphics. In Excel, a 
chart is dynamic: After you create a chart, changing its worksheet data results in 
an immediate change in the chart.

In this example, and in all the ones to follow, Step 3 is always

Insert | Recommended Charts

You can, however, directly access a chart type without Excel’s recommendations. 
The Charts group on the Insert tab provides a button for each chart type. You can 
also access each chart from the All Charts tab in the Recommended Charts dia-
log box.

Becoming a Columnist
In this section, I show you how to create the spiffy graph shown earlier, in  
Figure 3-1. Follow these steps:

1. Enter your data into a worksheet.

Figure 3-3 shows the data from Table 3-1 entered into a worksheet.

2. Select the data that go into the chart.

I selected A1:F7. The selection includes the labels for the axes but doesn’t 
include row 8, which holds the column totals.

3. In the Charts area of the Insert tab, select Recommended Charts.

Choosing Insert | Charts | Recommended Charts opens the Insert Chart dialog 
box, shown in Figure 3-4. I scrolled down the recommended charts in the left 
column and selected Excel’s fifth recommendation. (Apparently, Excel’s tastes 
are a bit different from mine — even in this edition! Perhaps in a future 
version, Excel and I will see eye to eye.) This type of chart is called Clustered 
Column. I click OK to put the chart in the worksheet.

FIGURE 3-3: 
Table 3-1 data, 
entered into a 

worksheet.
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4. Modify the chart.

Figure 3-5 shows the resulting chart as well as the Chart Design tab and the 
Format tab. These tabs combine to form Chart Tools. As you can see, I have to 
do some modifying. Why? Excel has guessed wrong about how I want to design 
the chart. It looks okay, but it will look better (to my eye) if I relocate the legend 
(the part below the x-axis that shows what all the colors mean). As Figure 3-1 
shows, I prefer the legend on the right side of the chart.

To make the modification, I double-click on the legend. This action opens the 
Format Legend pane. (See Figure 3-5.) I click the Top Right radio button to 
reposition the legend.

Some work remains. For some reason, Excel creates the chart without a line for 
the y-axis, and with a light gray line for the x-axis. Also, the axes aren’t labeled 
yet, and the graph has no title.

I start by formatting the axes. When I click on the y-axis, the Format Axis pane 
replaces the Format Legend pane. Figure 3-6 shows this pane after choosing Axis 
Options and then Line. I worked with the Color button to change the color of the 
y-axis. In the same way, I can select the x-axis and then repeat the same steps to 
change the color of the x-axis.

FIGURE 3-4: 
The Insert Chart 

dialog box.
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FIGURE 3-5: 
The Format 

Legend pane.

FIGURE 3-6: 
The Format Axis 
pane, with Axis 

Options and Line 
selected.



72      PART 2  Describing Data

Next, I add the axis titles and the chart title. To do this, I move the cursor inside 
the chart and click. A set of buttons appears to the right of the chart. One of them, 
labeled with a plus sign (+), is called the Chart Elements button. Click this button 
and, on the pop-up menu that appears, select the check box next to Axis Titles. 
Figure 3-7 shows the Chart Elements button and the Axis Titles check box selected. 
Choosing an axis from the pop-up menu adds a text box with placeholder text to 
that axis.

Use the title text boxes to add the titles and finish off the chart to make it look like 
the chart in Figure 3-1.

To add elements to a chart, you can also use the Add Chart Elements button on the 
extreme left side of the Chart Design tab.

For a quick way to add the chart title, just click the title in the chart and type a new 
title.

When you add a title (whether axis or chart), you can either select the title and 
start typing or highlight the title before you start typing. If you type without high-
lighting, the new title appears on the Formula bar and then in the title area after 
you press Enter. If you highlight before you type, the title appears in the title area 
as you type.

FIGURE 3-7: 
The Chart 

Elements button, 
with Axis Titles 

selected.
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You can preview a chart in a couple of ways. In the Insert Chart dialog box, clicking 
each recommended chart previews how your data looks in each type of chart. Each 
preview appears in the dialog box. After you create your chart, mousing over 
alternatives on the Chart Design tab previews different looks for your chart. Each 
preview temporarily changes your chart.

That set of buttons headed by the plus sign provides many useful shortcuts. The 
Paintbrush button presents a variety of color schemes and styles for your chart. 
The filter button allows you to delete selected elements from the chart and gives a 
shortcut for opening the Select Data Source dialog box (which I use in the later 
section “Drawing the Line.”)

Stacking the Columns
If I had selected Excel’s seventh recommended chart, I would have created a set of 
columns that presents the same information in a slightly different way. This type 
of chart is called Stacked Columns. Each column represents the total of all the data 
series at a point on the x-axis. Each column is divided into segments and each 
segment’s size is proportional to how much it contributes to the total. Figure 3-8 
shows this.

FIGURE 3-8: 
A stacked column 
chart of the data 

in Table 3-1.
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I inserted each graph into the worksheet. Excel also allows you to move a graph to 
a separate sheet in the workbook. Click on the chart to make the Chart Design tab 
visible. Then choose Chart Design | Move Chart (it’s on the extreme right side of 
the Chart Design tab) to open the Move Chart dialog box. Click the New Sheet radio 
button to add a sheet and move the chart there. Figure 3-9 shows how the chart 
looks in its own chart sheet. As you can see in Figure 3-9, I relocated the legend 
from Figure 3-8.

This is a nice way of showing percentage changes over the course of time. If you just 
want to focus on percentages in one year, the next type of graph is more effective.

Slicing the Pie
On to the next chart type. To show the percentages that make up one total, a pie 
chart gets the job done effectively.

Suppose you want to focus on US commercial space revenues for 1994 — the last 
column of data in Table 3-1. You catch people’s attention when you present the 
data in the form of a pie chart, like the one in Figure 3-10.

FIGURE 3-9: 
The Stacked 

Column chart, in 
its own chart 

sheet.
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Here’s how to create this chart:

1. Enter your data into a worksheet.

It’s pretty easy. I’ve already done this.

2. Select the data that go into the chart.

I want the names in column A and the data in column F. The trick is to select 
column A (cells A2 through A7) in the usual way and then press and hold the 
Ctrl key. While holding this key, drag the cursor from F2 through F7. Voilà — 
two non-adjoining columns are selected.

3. Choose Insert | Recommended Charts from the main menu and pick Pie 
Chart from the list on the left side of the screen.

4. Modify the chart.

Figure 3-11 shows the initial pie chart (after I added the title) on its own sheet. 
To get it to look like Figure 3-10, I had to do a lot of modifying. First, I formatted 
the legend as in the preceding example.

FIGURE 3-10: 
A pie chart of the 

last column of 
data in Table 3-1.
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The numbers inside the slices are called data labels. To add them, I select the 
chart (not just one slice) and then click the Chart Elements button. I then check 
the box next to Data Labels.

To change the font color of the labels, click one of the data labels and select 
Text Options in the Format Data Labels pane that appears. Click the Solid Fill 
radio button and change the color from black to white. Press Ctrl+B to make 
the font bold.

Whenever you set up a pie chart, always keep the following in mind. . . .

A word from the wise
The late, great social commentator, raconteur, and former baseball player Yogi 
Berra once went to a restaurant and ordered a whole pizza.

“How many slices should I cut,” asked the waitress, “four or eight?”

“Better make it four,” said Yogi. “I’m not hungry enough to eat eight.”

FIGURE 3-11: 
The initial pie 

chart, on its own 
sheet.
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Yogi’s insightful analysis leads to a useful guideline about pie charts: They’re 
more digestible if they have fewer slices. If you cut a pie chart too fine, you’re 
likely to leave your audience with information overload.

When you create a chart for a presentation (as in PowerPoint), include the data 
labels. They often clarify important points and trends for your audience.

(That Yogi anecdote appears in the previous four editions of this book. Did it really 
happen? We can’t be sure. As Mr. Berra once famously said: “Half the lies they tell 
about me aren’t true.”)

Drawing the Line
In the preceding example, I focus on one column of data from Table 3-1. In this 
example, I focus on one row. The idea is to trace the progress of one space related 
industry across the years 1990–94. In this example, I graph the revenues from 
Satellite Services. The final product, shown on its own sheet, is shown in 
Figure 3-12.

FIGURE 3-12: 
A line chart of the 

second row of 
data in Table 3-1.
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A line chart is a good way to show change over time, when you aren’t dealing with 
many data series. If you try to graph all six industries on one line chart, it begins 
to look like spaghetti.

How do you create a chart like Figure 3-12? Follow along:

1. Enter your data into a worksheet.

Once again, it’s already done.

2. Select the data that go into the chart.

For this example, that’s cells A3 through F3. Yes, I include the label.

Whoa! Did I forget something? What about that little trick I showed you earlier, 
where you hold down the Ctrl key and select additional cells? Couldn’t I do that 
and select the top row of years for the x-axis?

Nope. Not this time. If I do that, Excel thinks 1990, 1991, 1992, 1993, and 1994 
are just another series of data points to plot on the graph. I show you another 
way to put those years on the x-axis.

3. Choose Insert | Recommended Charts from the main menu and select a 
chart type.

This time, I select the All Charts tab, pick Line in the left column, and choose 
Line with Markers from the options. Figure 3-13 shows the result.

4. Modify the chart.

The line on the chart might be a little hard to see. Clicking the line and then 
choosing Chart Design | Change Colors from the menu that appears gives a 
set of colors for the line. I chose black.

Next, I added the titles for the chart and for the axes. The easiest way to 
change the title (which starts out as the label I selected along with the data) is 
to click the title and type the change.

To add the axis titles, I clicked the Chart Elements button (labeled with a plus 
sign) and selected the check box next to Axis Titles on the pop-up menu. (Refer 
to Figure 3-7.) I then clicked an axis title, highlighted the text, and typed the 
new title.

I still have to put the years on the x-axis. To do this, I right-clicked inside the 
chart to open the pop-up menu shown in Figure 3-14.
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Choosing Select Data from this menu opens the Select Data Source dialog box. 
(See Figure 3-15.) In the box labeled Horizontal (Category) Axis Labels, clicking 
the Edit button opens the Axis Labels dialog box. (See Figure 3-16.) A blinking 
cursor in the Axis Label Range box shows it’s ready for business. Selecting cells 
B1 through F1 and clicking OK sets the range and closes this dialog box. 
Clicking OK closes the Select Data Source dialog box and puts the years on the 
x-axis.

FIGURE 3-13: 
The result of 

choosing Line 
with Markers 

from the All 
Charts tab.

FIGURE 3-14: 
Right-clicking 

inside the chart 
opens this menu.
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Adding a Spark
The brainchild of Edward Tufte (also known as “the da Vinci of data”), a sparkline 
is a tiny chart you can integrate into text or a table to quickly illustrate a trend. It’s 
designed to be the size of a word. In fact, Tufte refers to sparklines as datawords.

Three types of sparklines are available: One is a line chart; another is a column 
chart. The third is a special type of column chart that sports fans will enjoy: It 
shows wins and losses.

To show you what these sparklines look like, I apply the first two to the Table 3-1 
data. First, I insert two columns between Column A and Column B. Then, in the 
new (blank) Column B, I select cell B2. Then I choose Insert | Sparklines ➪   Line 
from the main menu to open the Create Sparklines dialog box. (See Figure 3-17.)

In the Data Range box, I enter D2:H2 and click OK. Then I autofill the column. I 
repeat these steps for column C, except this time I choose Sparklines | Column 
instead of Sparklines | Line. Figure 3-18 shows the results.

If you absolutely must show a table in a presentation, sparklines are a welcome 
addition. If I were presenting this table, I would include the column sparklines.

FIGURE 3-15: 
The Select Data 

Source  
dialog box.

FIGURE 3-16: 
The Axis Labels 

dialog box.
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How else would you use a sparkline? Figure 3-19 shows two column sparklines 
integrated into a Word document. It takes a little maneuvering to copy and paste 
properly, and you have to paste the sparkline as a picture. I think you’ll agree that 
the results are worth the effort.

The Win/Loss sparkline nicely summarizes a sports team’s progress throughout a 
season. Created with the Win/Loss button in the Sparklines area, the sparklines in 
Figure 3-20 represent the monthly records of the teams in the National Basketball 
Association’s Atlantic Division for the 2020–2021 season.

FIGURE 3-17: 
The Create 
Sparklines 

dialog box.

FIGURE 3-18: 
Line sparklines 

and column 
sparklines for the 
data in Table 3-1.

FIGURE 3-19: 
Sparklines in a 

Word document.

FIGURE 3-20: 
Win/Loss 

sparklines for the 
2020–2021 NBA 

Atlantic Division, 
featuring the 

magnificent 
Brooklyn Nets.
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In the data, 1 represents a winning record for the month (more wins than  
losses), –1 represents a losing record, and 0 (not in this dataset) means the team 
won as many games as they lost. In the sparkline, a winning month appears as a 
marker above the middle of the Sparkline cell, a losing month appears as a marker 
below the middle of the Sparkline cell, and a break-even month (again, not in this 
data set) is a blank.

The magnificent Brooklyn Nets, you’ll note, was one of only two teams in the 
Division to have a winning record in each of the five months. (Yes, I know they 
went on to lose in the semifinals to the ultimate NBA champs. Don’t go there. 
Seriously.)

To delete a sparkline, skip the usual method. Instead, right-click it and choose 
Sparklines from the pop-up menu. You see a choice that allows you to clear the 
sparkline.

Passing the Bar
Excel’s bar chart is a column chart laid on its side. This is the one that reverses the 
horizontal-vertical convention. Here, the vertical axis holds the independent 
variable, and it’s referred to as the x-axis. The horizontal axis is the y-axis, and it 
tracks the dependent variable.

When would you use a bar chart? This type of chart fits the bill when you want to 
make a point about reaching a goal, or about the inequities in attaining one.

Table 3-2 shows the data on home Internet usage. The data, from the US Census 
Bureau (via the US Statistical Abstract), are for the year 2013. Percent means the 
percentage of people in each income group.

TABLE 3-2	 Use of the Internet at Home (2013)
Household Income Percent

Less than $25,000 48.4

$25,000 to $49,999 69.0

$50,000 to $99,999 84.9

$100,000 to $149,999 92.7

$150,000 and more 94.9

Data from U.S. Census Bureau
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The numbers in the table show a clear trend. Casting them into a bar chart shows 
the trend even more clearly, as you can see in Figure 3-21.

To create this graph, follow these steps:

1. Enter your data into a worksheet.

Figure 3-22 shows the data entered into a worksheet.

2. Select the data that go into the chart.

For this example, the data are cells A1 through B8.

3. Choose Insert | Recommended Charts from the main menu and then 
choose the chart you like from the list on the left side of the screen.

I selected the first option: Clustered Bar. Figure 3-23 shows the result.

4. Modify the chart.

The first modification is to change the chart title. One way to do this is to click 
the current title and type the new title. Next, I add the axis titles. To do this, I 
click the Chart Elements button, that button labeled with a plus sign (+). 
Selecting the Axis Labels check box on the menu that appears adds generic 
axis titles, which I then change. Finally, I bold the font on the axis titles as well 
as the axis numbers. The easiest way to do that is to select an element and 
press Ctrl+B.

FIGURE 3-21: 
A bar chart of the 
data in Table 3-2.
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The Plot Thickens
You use an important statistical technique called linear regression to determine the 
relationship between one variable, x, and another variable, y. For more informa-
tion on linear regression, see Chapter 14.

The basis of the technique is a graph that shows individuals measured on both x 
and y. The graph represents each individual as a point. Because the points seem to 
scatter around the graph, the graph is called a scatterplot.

Suppose you’re trying to find out how well a test of aptitude for sales predicts 
salespeople’s productivity. You administer the test to a sample of salespersons 
and you tabulate how much money they make in commissions over a 2-month 

FIGURE 3-22: 
Table 3-2 data in 

a worksheet.

FIGURE 3-23: 
The initial Excel 

bar chart.
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period. Each person’s pair of scores (test score and commissions) locates that 
person within the scatterplot.

To create a scatterplot, follow these steps:

1. Enter your data into a worksheet.

Figure 3-24 shows the entered data.

2. Select the data that go into the chart.

In the background of Figure 3-25, you can see the selected cells — B2 through 
C21. (Including B1 creates the same chart, but with an incorrect title.) The cells 
in Column A are just placeholders that organize the data.

3. Choose Insert | Recommended Charts from the main menu and then 
select the chart type from the list on the left of the screen.

I chose the first option, resulting in the chart shown in Figure 3-25.

4. Modify the chart.

I clicked the generic chart title and typed a new title. Next, I clicked the Chart 
Elements tool (labeled with a plus sign) and used the resulting menu to add 
generic axis titles to the chart. I then typed new titles. Finally, I selected each 
axis title and typed Ctrl+B to turn the font bold. I did that for the chart title, too. 
The result is the scatterplot in Figure 3-26.

FIGURE 3-24: 
Your scatterplot 

data.
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FIGURE 3-26: 
The almost-

finished 
scatterplot.

FIGURE 3-25: 
The initial 

scatterplot.
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For the other graphs, that would just about do it, but this one’s special. Right-
clicking any of the points in the scatterplot opens the pop-up menu shown in 
Figure 3-27.

Choosing Add Trendline opens the Format Trendline pane. (See Figure 3-28.) I 
selected the Linear radio button (the default) and clicked the two check boxes at 
the bottom. (You have to scroll down to see them.) They’re labeled Display Equa-
tion on Chart and Display R-Squared Value on Chart.

FIGURE 3-27: 
Right-clicking any 

point on the 
scatterplot opens 

this menu.

FIGURE 3-28: 
The Format 

Trendline pane.
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Clicking the Close button closes the Format Trendline pane. A couple of additional 
items are now on the scatterplot, as Figure 3-29 shows. A line passes through the 
points. Excel refers to it as a trendline, but it’s more accurately called a regression 
line. A couple of equations are there, too. (For clarity, I dragged them from their 
original locations.) What do they mean? What are those numbers all about?

Read Chapter 14 to find out.

Finding Another Use for the Scatter Chart
In addition to the application in the preceding section, you use the scatter chart to 
create something like a line chart. The conventional line chart works when the 
values on the x-axis are equally spaced, as is the case for the data in Table 3-1.

Suppose that your data look like the values in Figure  3-30. Veterans of earlier 
Excel versions (Excel 2010 and before) might remember having to figure out that 
a scatter chart with lines and markers was the best way to visualize these data.

Excel now figures this out for you. Selecting the data and choosing Insert | Rec-
ommended Charts presents the Scatter with Straight Lines and Markers as the 
first option — although Excel labels it simply as Scatter. (See Figure 3-31.) This 
puts you on the road to the appropriate chart.

FIGURE 3-29: 
The scatterplot, 
with additional 

information.
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In Chapters 8, 10, 11, and 19, I show you still another use for the scatter chart. In 
those chapters, I apply Scatter with Smooth Lines. Stay tuned.

FIGURE 3-30: 
These data 

suggest a line 
chart, but the 

x-values aren’t 
equally spaced.

FIGURE 3-31: 
Recommended 

Charts suggests 
the appropriate 

chart for the data.
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Chapter 4
Finding Your Center

Statisticians deal with groups of numbers. They often find it helpful to use a 
single number to summarize a group of numbers. Where would a single 
summary number come from?

The best bet is to find a number that’s somewhere in the middle and use that 
number to stand for the whole group. If you look at a group of numbers and try to 
find one that’s somewhere in the middle, you’re dealing with that group’s central 
tendency. Like good ice cream, central tendency comes in several flavors.

Means: The Lore of Averages
Just about everyone uses averages. The statistical term for an average is mean. 
Sometime in your life, you’ve undoubtedly calculated one. The mean is a quick 
way to characterize your grades, your money, or perhaps your performance in 
some task or sport over time.

Another reason for calculating means concerns the kind of work that scientists do. 
Typically, a scientist applies some kind of procedure to a small sample of people 
or things and measures the results in some way. They use the results from the 
sample to estimate the effects of the procedure on the population that produced 
the sample. As it happens, the mean of the sample is the best estimate of the 
population mean.

IN THIS CHAPTER

 » Working within your means

 » Meeting conditions

 » Understanding that the median is the 
message

 » Getting into the mode
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Calculating the mean
You probably don’t need me to tell you how to calculate a mean, but I’m going to 
do it anyway. Then I show you the statistical formula. My goal is to help you 
understand statistical formulas in general and then set you up for how Excel cal-
culates means.

A mean is just the sum of a bunch of numbers divided by the amount of numbers 
you added up. Here’s an example: You measure the reading speeds of six children 
in words per minute and you find that their speeds are

56, 78, 45, 49, 55, 62

The average reading speed of these six children is

56 78 45 49 55 62
6

57 5.

That is, the mean of this sample is 57.5 words per minute.

A first try at a formula might be

Mean Sum of Numbers
Amount of Numbers You Added Up

This is unwieldy as formulas go, so statisticians use abbreviations. A commonly 
used abbreviation for number is X. A typical abbreviation for the phrase Amount of 
Numbers You Added Up is N. With these abbreviations, the formula becomes

Mean Sum of X
N

Another abbreviation, used throughout statistics, stands for Sum of. It’s the upper-
case Greek letter for S. It’s pronounced “sigma,” and it looks like this: Σ. Here’s 
the formula with the sigma:

Mean
X

N

What about mean? Statisticians abbreviate that, too. M would be a good abbrevia-
tion, and some statisticians use it, but most use X  (pronounced “X bar”) to rep-
resent the mean. Here’s the formula:

X
X

N

Is that it? Well, not quite. English letters, like X , represent characteristics of sam-
ples. For characteristics of populations, the abbreviations are Greek letters. For 
the population mean, the abbreviation is the Greek equivalent of M, which is μ 
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(pronounced like “you” but with m in front of it). The formula for the population 
mean, then, is

X
N

AVERAGE and AVERAGEA
Excel’s AVERAGE worksheet function calculates the mean of a set of numbers.  
Figure 4-1 shows the data and the Function Arguments dialog box for AVERAGE.

Here are the steps:

1. In the worksheet, enter your numbers into an array of cells and select 
the cell where you want AVERAGE to place the result.

For this example, I entered 56, 78, 45, 49, 55, and 62 into cells B2 through B7, 
and I selected B8 for the result.

2. From the Statistical Functions menu, choose AVERAGE to open the 
AVERAGE Function Arguments dialog box.

FIGURE 4-1: 
Working with 
AVERAGE.
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3. In the Function Arguments dialog box, enter the values for the 
arguments.

If the array of number containing cells isn’t already in the Number1 box, enter 
it into that box. The mean (57.5, for this example) appears in this dialog box.

4. Click OK to close the AVERAGE Function Arguments dialog box.

This puts the mean into the cell selected in the worksheet. In this example, 
that’s B8.

As you can see in Figure 4-1, the formula in the Formula bar is

=AVERAGE(B2:B7)

Had I defined Number as the name of B2 through B7 (see Chapter 2), the formula 
would be

=AVERAGE(Number)

AVERAGEA does the same thing as AVERAGE, but with one important difference: 
When AVERAGE calculates a mean, it ignores cells that contain text and it ignores 
cells that contain the expressions TRUE or FALSE. AVERAGEA takes text and expres-
sions into consideration when it calculates a mean. As far as AVERAGEA is con-
cerned, if a cell holds text or the word FALSE, it has a value of 0. If a cell holds the 
word TRUE, it has a value of 1. AVERAGEA includes these values in the mean.

I’m not sure that you’ll use this capability during everyday statistical work (I 
never have), but Excel has worksheet functions like AVERAGEA, VARA, and STDEVA, 
and I want you to know how they operate. Here are the steps for AVERAGEA:

1. Type the numbers into the worksheet and select a cell for the result.

For this example, I entered the numbers 56, 78, 45, 49, 55, and 62 in cells B2 
through B7 and selected B9. This leaves B8 blank. I did this because I’m going 
to put different values into B8 and show you the effect on AVERAGEA.

2. From the Statistical Functions menu, choose AVERAGEA to open the 
AVERAGEA Function Arguments dialog box.

3. In the Function Arguments dialog box, enter the values for the 
arguments.

This time I entered B2:B8 into the Number1 box. The mean (57.5) appears in 
this dialog box. AVERAGEA ignores blank cells, just as AVERAGE does.

4. Click OK to close the Function Arguments dialog box, and the answer 
appears in the selected cell.
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Now for some experimentation. In B8, if I type xxx, the mean in B9 changes from 
57.5 to 49.28571. Next, typing TRUE into B8 changes the mean in B9 to 49.42857. 
Finally, after I type FALSE into B8, the mean changes to 49.28571.

Why the changes? AVERAGEA evaluates a text string like xxx as zero. Thus, the 
average in this case is based on seven numbers (not six), one of which is zero. 
AVERAGEA evaluates the value TRUE as 1. So the average with TRUE in B8 is based on 
seven numbers, one of which is 1.00. AVERAGEA evaluates FALSE as zero and calcu-
lates the same average as when B8 holds xxx.

AVERAGEIF and AVERAGEIFS
The two functions AVERAGEIF and AVERAGEIFS calculate average conditionally. 
AVERAGEIF includes numbers in the average if a particular condition is met. AVER-
AGEIFS includes numbers in the average if more than one condition is met.

To show you how these two functions work, I set up the worksheet in Figure 4-2. 
The entries represent the data from a fictional psychology experiment. In this 
experiment, a person sits in front of a screen and a color-filled shape appears. The 
color is either red or green, and the shape is either a square or a circle. The com-
bination for each trial is random, and all combinations appear an equal number of 
times. In the lingo of the field, each appearance of a color-filled shape is a trial. So 
the worksheet shows the outcomes of 16 trials.

The person sitting in front of the screen presses a button as soon as they see the 
shape. Column D (labeled RT msec) presents one person’s reaction time in milli-
seconds (thousandths of a second) for each trial. Columns B and C show the char-
acteristics of the shape presented on that trial. For example, row 2 tells you that, 
on the first trial, a red circle appeared and the person responded in 410 millisec-
onds (msec).

For each column, I defined the name in the top cell of the column to refer to the 
data in that column. (If you don’t remember how to do that, read Chapter 2.)

I’ve calculated three averages. The first, Average Overall (in cell D19), is just

=AVERAGE(RT_msec)

What about the other two? Cell D20 holds the average of trials that displayed a 
circle. That’s what I mean by a conditional average: It’s the average of trials that 
meet the condition Shape = “Circle”. (I talk about Cell D21 in a minute.)
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Figure 4-3 shows the completed Function Arguments dialog box for AVERAGEIF. 
The formula created after clicking OK is

=AVERAGEIF(Shape,"Circle",RT_msec)

FIGURE 4-3: 
The completed 
dialog box for 
AVERAGEIF.

FIGURE 4-2: 
Data from 16 

trials of a fictional 
psychology 

experiment.
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What the dialog box and the formula are telling you is this: Excel includes a cell in 
column D (RT_msec) in the average if the corresponding cell in column B (Shape) 
holds the value “Circle.” If not, the cell is not included.

To create this formula, follow these steps:

1. Type the numbers into the worksheet and select a cell for the result.

The cell I selected is D20.

2. From the Statistical Functions menu, choose AVERAGEIF to open the 
AVERAGEIF Function Arguments dialog box.

3. In the Function Arguments dialog box, enter the values for the 
arguments.

For AVERAGEIF in this example, the Range is Shape, the Criteria is "Circle" 
(Excel types the double quotes), and the Average_range is RT_msec.

4. Click OK to close the Function Arguments dialog box, and the answer 
appears in the selected cell.

Here’s some more information on AVERAGEIF: To find the average of the first eight 
trials, the formula is

=AVERAGEIF(Trial,"<9",RT_msec)

To find the average of reaction times faster than 400 msec, the formula is

=AVERAGEIF(RT_msec,"<400",RT_msec)

For each of these last two, the operator “<” precedes the numeric value. If you try 
to somehow set it up so that the value precedes the operator, the formula won’t 
work.

What about the average for Green Squares in cell D21? Figure 4-4 shows the com-
pleted dialog box for AVERAGEIFS, which can work with more than one criterion. 
The formula for calculating the average of trials on which Color = “Green” and 
Shape = “Square” is

=AVERAGEIFS(RT_msec,Color,"Green",Shape,"Square")

Notice that RT_msec is the first argument in AVERAGEIFS but the last argument in 
AVERAGEIF.
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To create this formula, follow these steps:

1. Type the numbers into the worksheet and select a cell for the result.

The cell I selected is D21.

2. From the Statistical Functions menu, choose AVERAGEIFS to open the 
AVERAGEIFS Function Arguments dialog box.

3. In the Function Arguments dialog box, enter the values for the 
arguments.

For AVERAGEIFS in this example, the Average_range is RT_msec. Criteria_
range1 is “Color” and Criteria1 is "Green." Criteria_range2 is Shape, 
and the Criteria is "Square". (Excel types the double quotes.)

4. Click OK to close the Function Arguments dialog box, and the answer 
appears in the selected cell.

Given what you just saw, you might be wondering why it’s necessary for Excel to 
have both AVERAGEIF and AVERAGEIFS. After all,

=AVERAGEIF(Shape,"Circle",RT_msec)

gives the same answer as

=AVERAGEIFS(RT_msec,Shape,"Circle")

Why two functions? Short answer: I don’t know. Long answer: I don’t know.

FIGURE 4-4: 
The completed 
dialog box for 
AVERAGEIFS.
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TRIMMEAN
In a retake on a famous quote about statistics, someone said, “There are three 
kinds of liars: liars, darned liars, and statistical outliers.” An outlier is an extreme 
value in a set of scores — so extreme, in fact, that the person who gathered the 
scores believes that something is amiss.

One example of outliers involves psychology experiments that measure a person’s 
time to make a decision. Measured in thousandths of a second, these reaction 
times depend on the complexity of the decision. The more complex the decision, 
the longer the reaction time.

Typically, a person in this kind of experiment goes through many experimental 
trials — one decision per trial. A trial with an overly fast reaction time (way below 
the average) might indicate that the person made a quick guess without really 
considering what they were supposed to do. A trial with a very slow reaction time 
(way above the average) might mean that the person wasn’t paying attention at 
first and then buckled down to the task at hand.

Either kind of outlier can get in the way of conclusions based on averaging the 
data. For this reason, it’s often a good idea to eliminate them before you calculate 
the mean. Statisticians refer to this as trimming the mean, and Excel’s TRIMMEAN 
function does this.

Here’s how you use TRIMMEAN:

1. Type the scores into a worksheet and select a cell for the result.

For this example, I put these numbers into cells B2 through B11:

500, 280, 550, 540, 525, 595, 620, 1052, 591, 618

These scores might result from a psychology experiment that measures reaction 
time in thousandths of a second (milliseconds). I selected B12 for the result.

2. From the Statistical Functions menu, choose TRIMMEAN to open the 
TRIMMEAN Function Arguments dialog box.

3. In the Function Arguments dialog box, type the values for the arguments.

The data array goes into the Array box. For this example, that’s B2:B11.

Next, I have to identify the percent of scores I want to trim. In the Percent box,  
I enter .2. This tells TRIMMEAN to eliminate the extreme 20 percent of the 
scores before calculating the mean. The extreme 20 percent means the highest 
10 percent of scores and the lowest 10 percent of scores. Figure 4-5 shows the 
dialog box, the array of scores, and the selected cell. The dialog box shows the 
value of the trimmed mean, 567.375.

4. Click OK to close the dialog box, and the answer appears in the selected cell.
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The label Percent is a little misleading here. You have to express the percent as a 
decimal, so you enter .2 rather than 20 in the Percent box if you want to trim the 
extreme 20 percent. (Quick question: If you enter 0 in the Percent box, what’s the 
answer equivalent to? Answer: AVERAGE(B2:B11).

What percentage of scores should you trim? That’s up to you. It depends on what 
you’re measuring, how extreme your scores can be, and how well you know the 
area you’re studying. When you do trim scores and report a mean, it’s important 
to let people know that you’ve done this and to let them know the percentage 
you’ve trimmed.

In the upcoming section on the median, I show you another way to deal with 
extreme scores.

Other means to an end
This section deals with two types of averages that are different from the one 
you’re familiar with. I tell you about them because you might run into them as you 
go through Excel’s statistical capabilities. (How many different kinds of averages 
are possible? Ancient Greek mathematicians came up with 11!)

Geometric mean
Suppose you have a two-year investment that yields 25 percent the first year and 
75 percent the second year. (If you do, I want to know about it!) What’s the aver-
age annual rate of return?

To answer that question, you might be tempted to find the mean of 25 and 75 
(which averages out to 50). But that misses an important point: At the end of the 
first year, you multiply your investment by 1.25 — you don’t add 1.25 to it. At the 
end of the second year, you multiply the first-year result by 1.75.

FIGURE 4-5: 
The TRIMMEAN 

Function 
Arguments dialog 

box, along with 
the array  

of cells and the 
selected cell.



CHAPTER 4  Finding Your Center      101

The regular, everyday, garden variety mean won’t give you the average rate of 
return. Instead, you calculate the mean this way:

Average Rate of Return  X 1.751 25 1 479. .

The average rate of return is about 47.9 percent, not 50 percent. This kind of aver-
age is called the geometric mean.

In this example, the geometric mean is the square root of the product of two num-
bers. For three numbers, the geometric mean is the cube root of the product of the 
three. For four numbers, it’s the fourth root of their product, and so on. In gen-
eral, the geometric mean of N numbers is the Nth root of their product.

The Excel worksheet function GEOMEAN calculates the geometric mean of a group 
of numbers. Follow the same steps as you would for AVERAGE, but choose  
GEOMEAN from the Statistical Functions menu.

Harmonic mean
Still another mean is something you run into when you have to solve the kinds of 
problems that live in algebra textbooks.

Suppose, for example, you’re in no particular hurry to get to work in the morning, 
and you drive from your house to your job at the rate of 40 miles per hour. At the 
end of the day, you’d like to get home quickly, so on the return trip (over exactly 
the same distance), you drive from your job to your house at 60 miles per hour. 
What is your average speed for the total time you’re on the road?

It’s not 50 miles per hour, because you’re on the road a different amount of time 
on each leg of the trip. Without going into this in too much detail, the formula for 
figuring this one out is

1 1
2

1
40

1
60

1
48Average

The average here is 48. This kind of average is called a harmonic mean. I show it to 
you for two numbers, but you can calculate it for any amount of numbers. Just put 
each number in the denominator of a fraction with 1 as the numerator. Mathema-
ticians call this the reciprocal of a number. (So ¼0 is the reciprocal of 40.) Add all 
the reciprocals together and take their average. The result is the reciprocal of the 
harmonic mean.
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In the rare event you ever have to figure out one of these in the real world, Excel 
saves you from the drudgery of calculation. The worksheet function HARMEAN cal-
culates the harmonic mean of a group of numbers. Follow the same steps as you 
would for AVERAGE, but on the Statistical Functions menu, choose HARMEAN.

For any set of numbers, the harmonic mean is less than the geometric mean, 
which is less than the mean.

Medians: Caught in the Middle
The mean is a useful way to summarize a group of numbers. It’s sensitive to 
extreme values, however: If one number is out of whack relative to the others, the 
mean quickly gets out of whack, too. When that happens, the mean might not be 
a good representative of the group.

For example, with these numbers as reading speeds (in words per minute) for a 
group of children:

56, 78, 45, 49, 55, 62

the mean is 57.5. Suppose the child who reads at 78 words per minute leaves the 
group and an exceptionally fast reader replaces him. Her reading speed is 180 
words per minute. Now the group’s reading speeds are

56, 180, 45, 49, 55, 62

The new average is 74.5. It’s misleading because — except for the new child — no 
one else in the group reads nearly that fast. In a case like this, it’s a good idea to 
turn to a different measure of central tendency — the median.

Simply put, the median is the middle value in a group of numbers. Arrange the 
numbers in order, and the median is the value below which half the scores fall and 
above which half the scores fall.

Finding the median
In our example, the first group of reading speeds (in increasing order) is

45, 49, 55, 56, 62, 78

The median is right in the middle of 55 and 56 — it’s 55.5.
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What about the group with the new child? That’s

45, 49, 55, 56, 62, 180

The median is still 55.5. The extreme value doesn’t change the median.

MEDIAN
The worksheet function MEDIAN (you guessed it) calculates the median of a group 
of numbers. Here are the steps:

1. Type your data into a worksheet and select a cell for the result.

I used 45, 49, 55, 56, 62, 78 for this example, in cells B2 through B7, with cell B8 
selected for the median. I arranged the numbers in increasing order, but you 
don’t have to do that to use MEDIAN.

2. Choose MEDIAN from the Statistical Functions menu to open the MEDIAN 
Function Arguments dialog box.

3. In the Function Arguments dialog box, enter the values for the 
arguments.

The Function Arguments dialog box opens with the data array in the Number1 
box. The median appears in that dialog box. (It’s 55.5 in this example.) Figure 4-6 
shows the dialog box along with the array of cells and the selected cell.

4. Click OK to close the dialog box, and the answer appears in the selected cell.

As an exercise, replace 78 with 180 in A6, and you see that the median doesn’t 
change.

FIGURE 4-6: 
The MEDIAN 

Function 
Arguments dialog 

box, along with 
the array of  

cells and the  
selected cell.
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Statistics à la Mode
One more measure of central tendency is important. This one is the score that 
occurs most frequently in a group of scores. It’s called the mode.

Finding the mode
Nothing is complicated about finding the mode. Look at the scores, find the one 
that occurs most frequently, and you’ve found the mode. Two scores tie for that 
honor. In that case, your set of scores has two modes. (The technical name is 
bimodal.)

Can you have more than two modes? Absolutely.

Suppose every score occurs equally often. When that happens, you have no mode.

Sometimes, the mode is the most representative measure of central tendency. 
Imagine a small company that consists of 30 consultants and two high-ranking 
officers. Each consultant has an annual salary of $40,000. Each officer has an 
annual salary of $250,000. The mean salary in this company is $53,125.

Does the mean give you a clear picture of the company’s salary structure? If you 
were looking for a job with that company, would the mean influence your expec-
tations? You’re probably better off if you consider the mode, which in this case is 
$40,000.

MODE.SNGL and MODE.MULT
Use Excel’s MODE.SNGL function to find a single mode:

1. Type your data into a worksheet and select a cell for the result.

I use 56, 23, 77, 75, 57, 75, 91, 59, and 75 in this example. The data are in cells 
B2 through B10, with B11 as the selected cell for the mode.

2. From the Statistical Functions menu, choose MODE.SNGL to open the 
MODE.SNGL Function Arguments dialog box. (See Figure 4-7.)

3. In the Function Arguments dialog box, type the values for the arguments.

I entered B2:B10 in the Number1 box, and the mode (75, in this example) 
appears in the dialog box.

4. Click OK to close the dialog box, and the answer appears in the  
selected cell.
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For a set of numbers that has more than one mode (that is, if it’s multimodal), use 
Excel’s MODE.MULT function. This is an array function: It returns (potentially) an 
array of answers, not just one. You select an array of cells for the results, and 
when you finish with the dialog box, you press Ctrl+Shift+Enter to populate the 
array.

Here’s an example of MODE.MULT:

1. Type your data into a worksheet and select a cell to start the output 
array.

I typed 57, 23, 77, 75, 57, 75, 91, 57, and 75 into cells B2:B10. I then selected 
B11 to start the output array. Notice that this set of numbers has two modes: 
57 and 75.

2. From the Statistical Functions menu, choose MODE.MULT to open the 
MODE.MULT Function Arguments dialog box. (See Figure 4-8.)

3. In the Function Arguments dialog box, type the values for the arguments.

4. Click OK to put the answers in the output array.

Figure 4-9 shows what happens after you click OK.

What happens if you use MODE.SNGL on a multimodal set of numbers? The result 
is the modal value that occurs first in the set. What happens if you use MODE.MULT 
on a set of numbers with one mode? You get an output array with one value.

So, this begs the question: Why would you ever want to use MODE.SNGL? This func-
tion is accurate only if the set of numbers you’re dealing with is unimodal. If you 
know in advance it’s unimodal, you probably already know the value of the mode, 
and you don’t need the function to begin with.

FIGURE 4-7: 
The MODE.SNGL 

Function 
Arguments dialog 

box, along with 
the array of  

cells and the 
selected cell.
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FIGURE 4-8: 
The MODE.MULT 

Function 
Arguments dialog 

box, along with 
the array of data 
cells and the cell 

to start the 
output array.

FIGURE 4-9: 
The results of 

MODE.MULT in 
the output array.
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Chapter 5
Deviating from the 
Average

H 
 
ere are three pieces of wisdom about statisticians:

 » Piece of Wisdom #1: “A statistician is a person who stands in a bucket of ice 
water, sticks their head in an oven, and says, ’On average, I feel fine.’” 
(K. Dunning)

 » Piece of Wisdom #2: “A statistician drowned crossing a stream with an 
average depth of 6 inches.” (Anonymous)

 » Piece of Wisdom #3: “Three statisticians go deer hunting with bows and 
arrows. They spot a big buck and take aim. One shoots and his arrow flies off, 
ten feet to the left. The second shoots and his arrow goes ten feet to the right. 
The third statistician jumps up and down, yelling, ’We got him! We got him!’” 
(Bill Butz, quoted by Diana McLellan in Washingtonian)

IN THIS CHAPTER

 » Finding out what variation is all 
about

 » Working with variance and standard 
deviation

 » Exploring Excel worksheet functions 
that calculate variation

 » Using workarounds for missing 
worksheet functions

 » Using additional worksheet functions 
for variation
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What’s the common theme? Calculating the mean is a great way to summarize a 
group of numbers, but it doesn’t supply all the information you typically need. If 
you just rely on the mean, you might miss something important.

To avoid missing important information, another type of statistic is necessary — 
a statistic that measures variation. It’s a kind of average of how much each number 
in a group differs from the group mean. Several statistics are available for mea-
suring variation. All of them work the same way: The larger the value of the sta-
tistic, the more the numbers differ from the mean. The smaller the value, the less 
they differ.

Measuring Variation
Suppose you measure the heights of a group of children and you find that their 
heights (in inches) are

48, 48, 48, 48, and 48

Then you measure another group and find that their heights are

50, 47, 52, 46, and 45

If you calculate the mean of each group, you find they’re the same — 48 inches. 
Just looking at the numbers tells you the two groups of heights are different: The 
heights in the first group are all the same, while the heights in the second vary 
quite a bit.

Averaging squared deviations: Variance 
and how to calculate it
One way to show the dissimilarity between the two groups is to examine the devi-
ations in each one. Think of a deviation as the difference between a score and the 
mean of all the scores in a group.

Here’s what I’m talking about. Table 5-1 shows the first group of heights and their 
deviations.
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One way to proceed is to average the deviations. Clearly, the average of the num-
bers in the Deviation column is zero.

Table 5-2 shows the second group of heights and their deviations.

What about the average of the deviations in Table  5-2? That’s  — wait for 
it — zero!

Hmm. . . . Now what?

Averaging the deviations doesn’t help you see a difference between the two 
groups, because the average of deviations from the mean in any group of numbers 
is always zero. In fact, veteran statisticians will tell you that’s a defining property 
of the mean.

The joker in the deck here is the negative numbers. How do statisticians deal with 
them?

The trick is to use something you might recall from algebra: A minus times a 
minus is a plus. Sound familiar?

TABLE 5-1	 The First Group of Heights and Their Deviations
Height Height-Mean Deviation

48 48-48 0

48 48-48 0

48 48-48 0

48 48-48 0

48 48-48 0

TABLE 5-2	 The Second Group of Heights and Their Deviations
Height Height-Mean Deviation

50 50-48 2

47 47-48 –1

52 52-48 4

46 46-48 –2

45 45-48 –3
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So. . . does this mean that you multiply each deviation times itself and then aver-
age the results? Absolutely. Multiplying a deviation times itself is called squaring a 
deviation. The average of the squared deviations is so important that it has a spe-
cial name: variance.

Table 5-3 shows the group of heights from Table 5-2, along with their deviations 
and squared deviations.

The variance — the average of the squared deviations for this group — is (4 + 1 + 
16 + 4 + 9)/5 = 34/5 = 6.8. This, of course, is quite different from the first group, 
whose variance is zero.

To develop the variance formula for you and show you how it works, I use symbols 
to show all this. X represents the Height heading in the first column of the table, 
and X  represents the mean. Because a deviation is the result of subtracting the 
mean from each number,

X X

represents a deviation. Multiplying a deviation by itself? That’s just

X X
2

To calculate variance, you square each deviation, add them up, and find the aver-
age of the squared deviations. If N represents the amount of squared deviations 
you have (in this example, five), then the formula for calculating the variance is

X X

N

2

Σ is the uppercase Greek letter sigma, and it stands for “the sum of.”

TABLE 5-3	 The Second Group of Heights and Their Squared Deviations
Height Height-Mean Deviation Squared Deviation

50 50-48 2 4

47 47-48 –1 1

52 52-48 4 16

46 46-48 –2 4

45 45-48 –3 9
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What’s the symbol for variance? As I say in Chapter  1, Greek letters represent 
population parameters, and English letters represent statistics. Imagine that our 
little group of five numbers is an entire population. Does the Greek alphabet have 
a letter that corresponds to V in the same way that μ (the symbol for the popula-
tion mean) corresponds to M?

As a matter of fact, it doesn’t. Instead, you use the lowercase sigma! It looks like 
this: σ. Not only that, but because you’re talking about squared quantities, the 
symbol is σ2.

So, the formula for calculating variance is

2

2
X X

N

Variance is large if the numbers in a group vary greatly from their mean. Variance 
is small if the numbers are very similar to their mean.

The variance you just worked through is appropriate if the group of five measure-
ments is a population. Does this mean that variance for a sample is different? It 
does, and you see why in a minute. First, I turn your attention back to Excel.

VAR.P and VARPA
Excel provides two worksheet functions, VAR.P and VARPA, for calculating the 
population variance.

Start with VAR.P. Figure 5-1 shows the Function Arguments dialog box for VAR.P 
along with data.

FIGURE 5-1: 
Working with 

VAR.P.
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Here are the steps to follow:

1. Put your data into a worksheet and select a cell to display the result.

Figure 5-1 shows that, for this example, I’ve put the numbers 50, 47, 52, 46, and 
45 into cells B2 through B6 and selected B8 for the result.

2. From the Statistical Functions menu, choose VAR.P to open the VAR.P 
Function Arguments dialog box.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

I entered B2:B7 in the Number1 field, rather than B2:B6. I did this to show you 
how VAR.P handles blank cells. The population variance, 6.8, appears in the 
Function Arguments dialog box.

4. Click OK to close the dialog box and put the result in the selected cell.

Had I defined Score as the name of B2:B7 (see Chapter 2), the formula in the for-
mula bar would be

=VAR.P(Score)

When VAR.P calculates the variance in a range of cells, it only sees numbers. If 
some of the cells hold text, blanks (like B7), or logical values, VAR.P ignores them.

VARPA, on the other hand, does not. VARPA takes text and logical values into con-
sideration and includes them in its variance calculation. How? If a cell contains 
text, VARPA sees that cell as containing a value of zero. If a cell contains the logical 
value FALSE, that’s also zero as far as VARPA is concerned. In VARPA’s view of the 
world, the logical value TRUE is one. Those zeros and ones get added into the mix 
and affect the mean and the variance.

To see this in action, I keep the numbers in cells B2 through B6 and again select 
cell B8. I follow the same steps as for VAR.P but this time open the VARPA Function 
Arguments dialog box. In the dialog box’s Value1 field, I type B2:B7 (that’s B7, not 
B6) and click OK. Cell B8 shows the same result as before because VARPA evaluates 
the blank cell B7 as no entry.

Typing TRUE into cell B7 changes the result in B8 because VARPA evaluates B7 as 1. 
(See Figure 5-2.)

Typing FALSE (or any other string of letters except TRUE) into B7 changes the value 
in B8 once again. In those cases, VARPA evaluates B7 as zero.
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Sample variance
Earlier, I mention that you use this formula to calculate population variance:

2

2
X X

N

I also explain that sample variance is a little different. Here’s the difference: If 
your set of numbers is a sample drawn from a large population, you’re probably 
interested in using the variance of the sample to estimate the variance of the 
population.

The formula you used for the variance doesn’t quite work as an estimate of the 
population variance. Although the sample mean works just fine as an estimate of 
the population mean, this doesn’t hold true with variance, for reasons way beyond 
the scope of this book.

How do you calculate a good estimate of the population variance? It’s pretty easy: 
You just use N-1 in the denominator rather than N (again, for reasons way beyond 
this book’s scope).

Also, because you’re working with a characteristic of a sample (rather than of a 
population), you use the English equivalent of the Greek letter — s rather than σ. 
This means that the formula for the sample variance is

s
X X

N
2

2

1

The value of s2, given the squared deviations in the set of five numbers, is

(4 + 1 + 16 + 4 + 9)/4 = 34/4 = 8.5

So, if these numbers

50, 47, 52, 46, and 45

FIGURE 5-2: 
VARPA evaluates 

TRUE as 1.0, 
changing the 

variance from the 
value in 

Figure 5-1.
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are an entire population, their variance is 6.8. If they’re a sample drawn from a 
larger population, the best estimate of that population’s variance is 8.5.

VAR.S and VARA
The worksheet functions VAR.S and VARA calculate the sample variance.

Figure 5-3 shows the Function Arguments dialog box for VAR.S with 50, 47, 52, 
46, and 45 entered into cells B2 through B6. Cell B7 is part of the cell range, but I 
left it empty.

The relationship between VAR.S and VARA is the same as the relationship between 
VAR.P and VARPA: VAR.S ignores cells that contain logical values (TRUE and FALSE) 
and text. VARA includes those cells. Once again, TRUE evaluates to 1.0, and FALSE 
evaluates to 0. Text in a cell causes VARA to see that cell’s value as 0.

This is why I left B7 blank. If you experiment a bit with VARA and logical values or 
text in B7, you see exactly what VARA does.

Back to the Roots: Standard Deviation
After you calculate the variance of a set of numbers, you have a value whose units 
are different from your original measurements. For example, if your original 
measurements are in inches, their variance is in square inches. This is because you 
square the deviations before you average them.

FIGURE 5-3: 
Working with 

VAR.S.
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Often, it’s more intuitive if you have a variation statistic that’s in the same units 
as the original measurements. It’s easy to turn variance into that kind of statistic. 
All you have to do is take the square root of the variance.

Like the variance, this square root is so important that it is given a special name: 
standard deviation.

Population standard deviation
The standard deviation of a population is the square root of the population variance. 
The symbol for the population standard deviation is σ (sigma). Its formula is

2

2
X X

N

For these measurements (in inches)

50, 47, 52, 46, and 45

the population variance is 6.8 square inches, and the population standard devia-
tion is 2.61 inches (rounded off).

STDEV.P and STDEVPA
The Excel worksheet functions STDEV.P and STDEVPA calculate the population 
standard deviation. Follow these steps:

1. Type your data into an array and select a cell for the result.

2. On the Statistical Functions menu, choose STDEV.P to open the STDEV.P 
Function Arguments dialog box.

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

After you enter the data array, the dialog box shows the value of the  
population standard deviation for the numbers in the data array. Figure 5-4 
shows this.

4. Click OK to close the dialog box and put the result into the selected cell.

Like VARPA, STDEVPA uses any logical values and text values it finds when it calcu-
lates the population standard deviation. TRUE evaluates to 1.0, and FALSE evaluates 
to 0. Text in a cell gives that cell a value of 0.
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Sample standard deviation
The standard deviation of a sample — an estimate of the standard deviation of a 
population — is the square root of the sample variance. Its symbol is s, and its 
formula is

s s
X X

N
2

2

1

For these measurements (in inches)

50, 47, 52, 46, and 45

the population variance is 8.4 square inches, and the population standard devia-
tion is 2.92 inches (rounded off).

STDEV.S and STDEVA
The Excel worksheet functions STDEV.S and STDEVA calculate the sample standard 
deviation. To work with STDEV.S, follow these steps:

1. Type your data into an array and select a cell for the result.

2. On the Statistical Functions menu, choose STDEV.S to open the STDEV.S 
Function Arguments dialog box.

FIGURE 5-4: 
The Function 

Arguments dialog 
box for STDEV.P, 

along with the 
data.
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3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

With the data array entered, the dialog box shows the value of the population 
standard deviation for the numbers in the data array. (See Figure 5-5.)

4. Click OK to close the dialog box and put the result into the selected cell.

STDEVA uses text and logical values in its calculations. Cells with text have values 
of 0, and cells whose values are FALSE also evaluate to 0. Cells that evaluate to 
TRUE have values of 1.0.

The missing functions: STDEVIF  
and STDEVIFS
Here’s a rule of thumb: Whenever you present a mean, provide a standard devia-
tion. Use AVERAGE and STDEV.S in tandem.

Remember that Excel offers two functions, AVERAGEIF and AVERAGEIFS, for calcu-
lating means conditionally. (See Chapter 4.) Two additional functions would have 
been helpful: STDEVIF and STDEVIFS, for calculating standard deviations condi-
tionally when you calculate means conditionally.

Excel, however, doesn’t provide these functions. Instead, I show you a couple of 
work-arounds that enable you to calculate standard deviations conditionally.

FIGURE 5-5: 
The Function 

Arguments dialog 
box for 

STDEV.S.
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The work-arounds filter out data that meet a set of conditions and then calculate 
the standard deviation of the filtered data. Figure 5-6 shows what I mean. The 
data are from the fictional psychology experiment I describe in Chapter 4.

Here, once again, is the description:

A person sits in front of a screen and a color-filled shape appears. The color is 
either red or green, and the shape is either a square or a circle. The combination 
for each trial is random, and all combinations appear an equal number of times. In 
the lingo of the field, each appearance of a color-filled shape is called a trial. So, 
the worksheet shows the outcomes of 16 trials.

The person sitting in front of the screen presses a button as soon as they see the 
shape. Column A presents the trial number. Columns B and C show the color and 
shape, respectively, presented on that trial. Column D (labeled RT_msec) presents 
one person’s reaction time in milliseconds (thousandths of a second) for each 
trial. For example, row 2 tells you that, on the first trial, a red circle appeared and 
the person responded in 410 msec (milliseconds).

For each column, I define the name in the top cell of the column to refer to the 
data in that column. (If you don’t remember how to do that, read Chapter 2.)

Cell D19 displays the overall average of RT_msec. The formula for that average, of 
course, is

=AVERAGE(RT_msec)

FIGURE 5-6: 
Filtering data to 

calculate 
standard 
deviation 

conditionally.
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Cell D20 shows the average for all trials on which a circle appeared. The formula 
that calculates that conditional average is

=AVERAGEIF(Shape,"Circle",RT_msec)

Cell D21 presents the average for trials on which a green square appeared. That 
formula is

=AVERAGEIFS(RT_msec,Color,"Green",Shape,"Square")

Columns H and K hold filtered data. Column H shows the data for trials that dis-
played a circle. Cell H19 presents the standard deviation (STDEV.S) for those trials 
and is the equivalent of

=STDEVIF(Shape,"Circle",RT_msec)

if this function existed.

Column K shows the data for trials that displayed a green square. Cell K19 presents 
the standard deviation (STDEV.S) for those trials, and is the equivalent of

=STDEVIFS(RT_msec, Color,"Green",Shape,"Square")

if that function existed.

How did I filter the data? I let you in on the secret in a moment, but first I have to 
tell you about another topic.

A little logic
To proceed, you have to know about two of Excel’s logic functions: IF and AND. You 
access them by first choosing Formulas | | Logical Functions from the main menu 
and then choosing IF or AND from the Logical Functions menu.

IF takes three arguments:

 » A logical condition to be satisfied

 » The action to take if the logical condition is satisfied (that is, if the value of the 
logical condition is TRUE)

 » An optional argument that specifies the action to take if the logical condition 
isn’t satisfied (that is, if the value of the logical condition is FALSE)

Figure 5-7 shows the Function Arguments dialog box for IF.
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AND can take up to 255 arguments. AND checks to see if each argument meets its 
specified condition — that is, if each condition is TRUE. If they all do, AND returns 
the value TRUE. If not, AND returns FALSE.

Figure 5-8 shows the Function Arguments dialog box for AND.

And now, back to the show
In this example, I use IF to set the value of a cell in column H to the corresponding 
value in column D if the value in the corresponding cell in column C is “Circle”. 
The formula in cell H2 is

=IF(C2="Circle",D2," ")

If this were a phrase, it would be, “If the value in C2 is ’Circle,’ then set the value 
of this cell to the value in D2. If not, leave this cell blank.” Autofilling the next 15 
cells of column H yields the filtered data in column H. (Refer to Figure 5-6.) The 
standard deviation in cell H19 is the value STDEVIF would have provided.

FIGURE 5-7: 
The Function 

Arguments dialog 
box for IF.

FIGURE 5-8: 
The Function 

Arguments dialog 
box for AND.
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I could have omitted the third argument (the two double quotes) without affecting 
the value of the standard deviation. Without the third argument, Excel fills in 
FALSE for cells that don’t meet the condition, rather than leave them blank.

I use AND along with IF for the cells in column K. Each one holds the value from 
the corresponding cell in column D if two conditions are true:

 » The value in the corresponding cell in column B is “Green”

 » The value in the corresponding cell in column C is “Square”

The formula for cell K2 is

=IF(AND(B2="Green",C2="Square"),D2," ")

If this were a phrase, it would be, “If the value in B2 is ‘Green’ and the value in C2 
is ‘Square,’ then set the value of this cell to the value in D2. If not, leave this cell 
blank.” Autofilling the next 15 cells in column K results in the filtered data in col-
umn K. (Refer to Figure  5-6.) The standard deviation in cell K19 is the value 
STDEVIFS would have provided.

Related Functions
Before you move on, take a quick look at a couple of other variation related work-
sheet functions.

DEVSQ
DEVSQ calculates the sum of the squared deviations from the mean (without divid-
ing by N or by N-1). For these numbers

50, 47, 52, 46, and 45

that’s 34, as Figure 5-9 shows.

Although it’s rare to calculate just the sum of squared deviations, I apply this 
function in Chapter 17.
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Average deviation
One more Excel function deals with deviations in a way other than squaring them.

The variance and standard deviation deal with negative deviations by squaring all 
the deviations before averaging them. How about if you just ignore the minus 
signs? This is called taking the absolute value of each deviation. (That’s the way 
mathematicians say, “How about we just ignore the minus signs?”)

If you do that for the heights

50, 47, 52, 46, and 45

you can put the absolute values of the deviations into a table like Table 5-4.

FIGURE 5-9: 
The DEVSQ 
dialog box.

TABLE 5-4	 A Group of Numbers and Their Absolute Deviations
Height Height-Mean |Deviation|

50 50-48 2

47 47-48 1

52 52-48 4

46 46-48 2

45 45-48 3
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In Table 5-4, notice the vertical lines around Deviation in the heading for the third 
column. Vertical lines around a number symbolize its absolute value. That is, the 
vertical lines are the mathematical symbol for “How about we just ignore the 
minus signs?”

The average of the numbers in the third column is 2.4. This average is called the 
average absolute deviation, and it’s a quick-and-easy way to characterize the spread 
of measurements around their mean. It’s in the same units as the original mea-
surements. So, if the heights are in inches, the absolute average deviation is in 
inches, too.

Like variance and standard deviation, a large average absolute deviation signifies 
a lot of spread. A small average absolute deviation signifies little spread.

This statistic is less complicated than variance or standard deviation, but is rarely 
used. Why? For reasons that are (once again) beyond this book’s scope, statisti-
cians can’t use it as the foundation for additional statistics you meet later. Vari-
ance and standard deviation serve that purpose.

AVEDEV
Excel’s AVEDEV worksheet function calculates the average absolute deviation of a 
group of numbers. Figure 5-10 shows the AVEDEV Function Arguments dialog box, 
which presents the average absolute deviation for the cells in the indicated range.

FIGURE 5-10: 
The AVEDEV 

Function 
Arguments 
dialog box.
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Chapter 6
Meeting Standards 
and Standings

In my left hand, I hold 15 Mexican pesos. In my right, I hold 100 Colombian 
pesos. Which is worth more? Both currencies are called pesos, right? So,  
shouldn’t the 100 be greater than the 15? Not necessarily. Peso is just  

word-magic — a coincidence of names. Each one originates in a different country, 
and each country has its own economy.

To compare the two amounts of money, you have to convert each currency into a 
standard unit. The most intuitive standard for US residents is our own currency. 
How much is each amount worth in the US? As I write this, 15 Mexican pesos are 
worth 76 cents. One hundred Colombian pesos are worth 3 cents.

I show you how to use statistics to create standard units. Standard units show you 
where a score stands in relation to other scores in a group. I then go on to show 
you some additional ways to determine a score’s standing within a group.

IN THIS CHAPTER

 » Standardizing scores

 » Making comparisons

 » Working with ranks in files

 » Rolling in the percentiles
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Catching Some Z’s
A number in isolation doesn’t really tell a story: To fully understand what a num-
ber means, you have to consider the process that produced it. To compare one 
number to another, they both have to be on the same scale.

In some cases, like currency conversion, you can easily figure out a standard. In 
others, like temperature conversion or conversion into the metric system, a for-
mula guides you.

When it’s not all laid out for you, you can use the mean and the standard deviation 
to standardize scores that come from different processes. The idea is to take a set 
of scores and use its mean as a zero-point and its standard deviation as a unit of 
measure. Then you compare the deviation of each score from the mean to the 
standard deviation. You’re asking, “How big is a particular deviation relative to 
(something like) an average of all the deviations?”

To do this, you divide the score’s deviation by the standard deviation. In effect, 
you transform the score into another kind of score. The transformed score is 
called a standard score, or a z-score.

The formula for this is

z X X
s

if you’re dealing with a sample, and it’s

z X

if you’re dealing with a population. In either case, X represents the score you’re 
transforming into a z-score.

Characteristics of z-scores
A z-score can be positive, negative, or zero. A negative z-score represents a score 
that’s less than the mean, and a positive z-score represents a score that’s greater 
than the mean. When the score is equal to the mean, its z-score is 0.

When you calculate the z-score for every score in the set, the mean of the z-scores 
is 0, and the standard deviation of the z-scores is 1.

After you do this for several sets of scores, you can legitimately compare a score 
from one set to a score from another. If the two sets have different means and 
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different standard deviations, comparing without standardizing is like comparing 
apples with kumquats.

In the examples that follow, I show how to use z-scores to make comparisons.

Bonds versus the Bambino
Here’s an important question that often comes up in the context of serious meta-
physical discussions: Who is the greatest home run hitter of all time  — Barry 
Bonds or Babe Ruth? Although this question is a difficult one to answer, one way 
to get your hands around it is to look at each player’s best season and compare the 
two. Bonds hit 73 home runs in 2001, and Ruth hit 60  in 1927. On the surface, 
Bonds appears to be the more productive hitter.

The year 1927 was very different from 2001, however. Baseball (and everything 
else) went through huge changes in the intervening years, and player statistics 
reflect those changes. A home run was harder to hit in the 1920s than in the 2000s. 
Still, 73 versus 60? Hmmm. . . .

Standard scores can help decide whose best season was better. To standardize, I 
took the top 50 home run hitters of 1927 and the top 50 from 2001. I calculated the 
mean and standard deviation of each group and then turned Ruth’s 60 and Bonds’ 
73 into z-scores.

The average from 1927 is 12.68 homers with a standard deviation of 10.49. The 
average from 2001 is 37.02 homers with a standard deviation of 9.64. Although the 
means differ greatly, the standard deviations are pretty close.

And the z-scores? Ruth’s is

z 60 12 68
10 49

4 51.
.

.

Bonds’ is

z 73 37 02
9 64

3 73.
.

.

The clear winner in the z-score best-season home run derby is Babe Ruth. Period.

Just to show you how times have changed, Lou Gehrig hit 47 home runs in 1927 
(finishing second to Ruth) for a z-score of 3.27. In 2001, 47 home runs amounted 
to a z-score of 1.04.
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Exam scores
Moving away from sports debates, one practical application of z-scores is the 
assignment of grades to exam scores. Based on percentage scoring, instructors 
traditionally evaluate a score of 90 points or higher (out of 100) as an A,  
80–89 points as a B, 70–79 points as a C, 60–69 points as a D, and fewer than 60 
points as an F. Then they average the scores from several exams to assign a course 
grade.

Is that fair? Just as a peso from Argentina is worth more than a peso from Colom-
bia, and a home run was harder to hit in 1927 than in 2001, is a “point” on one 
exam worth the same as a “point” on another? Like peso, isn’t that just 
word-magic?

Indeed it is. A point on a difficult exam is, by definition, harder to come by than a 
point on an easy exam. Because points might not mean the same thing from one 
exam to another, the fairest thing to do is convert scores from each exam into 
z-scores before averaging them. That way, you’re averaging numbers on a level 
playing field.

In the courses I teach, I do just that. I often find that a lower numerical score on one 
exam results in a higher z-score than a higher numerical score from another exam. 
For example, on an exam where the mean is 65 and the standard deviation is 12, a 
score of 71 results in a z-score of .5. On another exam, with a mean of 69 and a 
standard deviation of 14, a score of 75 is equivalent to a z-score of .429. (Yes, it’s 
like Ruth’s 60 home runs versus Bonds’ 73.) Moral of the story: Numbers in isola-
tion tell you very little. You have to understand the process that produces them.

STANDARDIZE
Excel’s STANDARDIZE worksheet function calculates z-scores. Figure 6-1 shows a 
set of exam scores along with their mean and standard deviation. I used AVERAGE 
and STDEVP to calculate the statistics. The Function Arguments dialog box for 
STANDARDIZE is also shown in the figure.

Here are the steps:

1. Enter the data into an array and select a cell.

The data are in C2:C22. I selected D2 to hold the z-score for the score in C2. 
Ultimately, I autofill column D and line up all the z-scores next to the corre-
sponding exam scores.

2. From the Statistical Functions menu, select STANDARDIZE to open the 
Function Arguments dialog box for STANDARDIZE.
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3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

First, I enter into the X box the cell that holds the first exam score. In this 
example, that’s C2.

In the Mean box, I enter the cell that holds the mean — C23, in this example.

The entry has to be in absolute reference format, so it’s $C$23. You can type it 
that way, or you can select C23 and then highlight the Mean box and press the 
F4 key (or on some keyboards, fn+F4).

In the Standard_dev box, I enter the cell that holds the standard deviation. The 
appropriate cell in this example is C24.

This entry also has to be in absolute reference format, so it’s $C$24.

4. Click OK to close the Function Arguments dialog box and put the z-score 
for the first exam score into the selected cell.

To finish up, I position the cursor on the selected cell’s autofill handle, hold down 
the left mouse button, and then drag the cursor to autofill the remaining z-scores.

Figure 6-2 shows the autofilled array of z-scores.

FIGURE 6-1: 
Exam scores and 

the Function 
Arguments dialog 

box for 
STANDARDIZE.
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FIGURE 6-2: 
The autofilled 

array of z-scores.

CACHING SOME Z’S
Because negative z-scores might have connotations that are, well, negative, educators 
sometimes change the z-score when they evaluate students. In effect, they’re hiding the 
z-score, but the concept is the same — standardization with the standard deviation as 
the unit of measure.

One popular transformation is called the T-score. The T-score eliminates negative 
scores because, by definition, a set of T-scores has a mean of 50 and a standard devia-
tion of 10. The idea is to give an exam, grade all the tests, and calculate the mean and 
standard deviation. Next, turn each score into a z-score. Then follow this formula:

T z 10 50

People who use the T-score often like to round to the nearest whole number.

SAT scores are another transformation of the z-score. Under the old scoring system, the 
SAT has a mean of 500 and a standard deviation of 100. After the exams are graded, 
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Where Do You Stand?
Standard scores are designed to show you how a score stands in relation to other 
scores in the same group. To do this, they use the standard deviation as a unit of 
measure.

If you don’t want to use the standard deviation, you can show a score’s relative 
standing in a simpler way. You can determine the score’s rank within the group: 
The highest score has a rank of 1, the second highest has a rank of 2, and so on.

RANK.EQ and RANK.AVG
Excel offers two ranking functions. They differ on how they treat ties. When RANK.
EQ encounters tie scores, it assigns all of them the highest rank those scores 
attain. Therefore, three scores tied for second are all ranked second.

When RANK.AVG encounters ties, it assigns all of them the average of the ranks 
they attain. With this function, three scores tied for second are all ranked third 
(the average of ranks 2, 3, and 4).

To give you a better idea of how these two functions work, Figure 6-3 shows the 
results of applying each function to the scores in column B.

and their mean and standard deviation calculated, each exam score becomes a z-score 
in the usual way. This formula converts the z-score into a SAT score:

SAT z 100 50

Rounding to the nearest whole number is part of the procedure here, too.

The IQ score is still another transformed z. Its mean is 100, and (in the Stanford-Binet 
version) its standard deviation is 16. What’s the procedure for computing an IQ score? 
You guessed it — in a group of IQ scores, calculate the mean and standard deviation, 
and then calculate the z-score. Then it’s

IQ z 16 100

As with the other two, IQ scores are rounded to the nearest whole number.
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Here are the steps for using RANK.EQ:

1. Enter the data into an array and select a cell.

In this example, I enter the scores into cells B2 through B16 and select cell C2.

2. From the Statistical Functions menu, select RANK.EQ to open the 
Function Arguments dialog box for RANK.EQ.

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the Number box, I enter the cell that holds the score whose rank I want to 
insert into the selected cell. In this example, that’s B2.

In the Ref box, I enter the array that contains the scores. I entered B2:B16 into 
the Ref box.

This part is important. After I insert RANK.EQ into C2, I’m going to drag the 
cursor through column C and autofill the ranks of the remaining scores. To set 
up for this, I have to let Excel know I want B2 through B16 to be the array for 
every score, not just the first one.

That means the array in the Ref box has to look like this: $B$2:$B$16. I can 
either add the $ signs manually or highlight the Ref box and then press the 
F4 key.

In the Order box, I indicate the order for sorting the scores. To rank the scores 
in descending order, I can either leave the Order box alone or type 0 (zero) into 
that box. To rank the scores in ascending order, I type a non-zero value into the 
Order box. I left this box alone. (See Figure 6-4.)

4. Click OK to put the rank into the selected cell.

FIGURE 6-3: 
Applying 

RANK.EQ and 
RANK.AVG.
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I then position the cursor on the selected cell’s autofill handle, hold down the left 
mouse button, and then drag the cursor to autofill the ranks of the remaining 
scores. That, of course, is how I completed column C earlier, in Figure 6-3.

LARGE and SMALL
You can turn the ranking process inside out by supplying a rank and asking which 
score has that rank. The worksheet functions LARGE and SMALL handle this from 
either end. They tell you the fifth largest score or the third smallest score or any 
other rank you’re interested in.

Figure 6-5 shows the Function Arguments dialog box for LARGE. In the Array box, 
you enter the array of cells that holds the group of scores. In the K box, you enter 
the position whose value you want to find. To find the seventh largest score in the 
array, for example, type 7 into the K box.

FIGURE 6-4: 
The Function 

Arguments dialog 
box for 

RANK.EQ.

FIGURE 6-5: 
The Function 

Arguments dialog 
box for LARGE.
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SMALL does the same thing, except that it finds score positions from the lower end 
of the group. The Function Arguments dialog box for SMALL also has an Array box 
and a K box. Entering 7 in this K box returns the seventh lowest score in the array.

PERCENTILE.INC and PERCENTILE.EXC
Closely related to rank is the percentile, which represents a score’s standing in the 
group as the percent of scores below it. If you’ve taken standardized tests like the 
SAT, you’ve encountered percentiles. An SAT score in the 80th percentile is higher 
than 80 percent of the other SAT scores.

Simple, right? Not so fast. The definition of percentile is a bit shaky these days. 
Some define percentile as “greater than” (as in the preceding paragraph), some 
define percentile as “greater than or equal to.” Greater than equates to exclusive. 
Greater than or equal to equates to inclusive.

For this reason, Excel provides two worksheet formulas for dealing with percen-
tile. PERCENTILE.INC works via “greater than or equal to.” PERCENTILE.EXC works 
with “greater than.”

To use either one, you input a range of scores and a percentile. In these formulas, 
K represents percentile. PERCENTILE.INC finds the score that’s greater than or 
equal to that percentile. PERCENTILE.EXC finds the lowest score that’s greater 
than that percentile.

To show you how these two differ, I created the worksheet in Figure 6-6.

FIGURE 6-6: 
PERCENTILE.

INC versus 
PERCENTILE. 

EXC.
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The scores in column C are the same ones as in the preceding examples in this 
chapter, rearranged in descending order. K refers to percentiles. Notice that 
they’re in decimal form, so .95 means 95th percentile. The values in columns F and 
G are the results of calculating the formulas at the top of each column. The score 
in each row of those columns refers to the percentile in the same row of column 
C. So column F shows inclusive percentiles and column G shows exclusive percen-
tiles. I bolded the 75th, 50th, and 25th percentiles to set up the discussion in the 
upcoming sidebar, “Drawn and quartiled.”

Some differences stand out  — particularly, the error messages in column  
G. PERCENTILE.EXC returns an error message if the requested percentile is greater 
than N/(N + 1), where N is the number of scores. This is the maximum value of K 
that this formula works with. In this case, the maximum value is .94.

PERCENTILE.EXC also returns an error message if the requested percentile is less 
than 1/(N + 1). This is the minimum value the formula works with. In this case, 
that’s .06.

Also, as the figure shows, the two formulas locate percentiles differently. For 
example, the inclusive 70th percentile is somewhere between 65 and 67.  
PERCENTILE.INC interpolates it at 66.6. (The three ties at 78 pull the interpolation 
up from 66.) PERCENTILE.EXC extrapolates the exclusive 70th percentile at 69.2, 
the lowest number greater than that 65–67 neighborhood.

This doesn’t mean that the exclusive percentile is always greater than the inclu-
sive version. A couple of entries in columns F and G show that the opposite some-
times happens. Tie scores and where they are play major roles.

I doubt if the difference matters much in practical terms, but that’s just my opin-
ion. Bottom line: If you require “greater than or equal to” for your percentile, use 
INC. If you’re looking for just “greater than,” use EXC.

Here’s how to use PERCENTILE.INC:

1. Enter your data into a worksheet and select a cell.

2. From the Statistics menu, choose PERCENTILE.INC to open the 
PERCENTILE.INC Function Arguments dialog box.

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

Figure 6-7 shows the data, the selected cell, and the PERCENTILE.INC Function 
Arguments dialog box. I typed C2:C16 into the Range box and .75 into the 
K box.

4. Click OK to put the percentile into the selected cell.
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FIGURE 6-7: 
The PERCENTILE.

INC Function 
Arguments 
dialog box.

DRAWN AND QUARTILED
A few specific percentiles are often used to summarize a group of scores: the 25th, the 
50th, the 75th, and the 100th percentile (the maximum score). Because they divide a 
group of scores into fourths, these particular four percentiles are called quartiles. Excel’s 
QUARTILE.INC and QUARTILE.EXC formulas calculate them. The INC version calculates 
inclusively; the EXC version, exclusively. To understand how these formulas differ, take a 
look at the bolded rows in Figure 6-6.

Selecting QUARTILE.INC from the Insert Function dialog box opens the Function 
Arguments dialog box shown in the sidebar figure. (The dialog box for QUARTILE.EXC 
looks just like this one.)

The trick is to enter the right kind of numbers into the Quart box — 1 for the 25th per-
centile, 2 for the 50th, 3 for the 75th, and 4 for the 100th. Entering 0 into the Quart box 
gives you the lowest score in the group.
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Follow similar steps for PERCENTILE.EXC.

In both the PERCENTILE.INC and the PERCENTILE.EXC dialog boxes, you can 
enter the percentile into the K box as a decimal (.75) or as a percentage (75%). If 
you do it the second way, you have to include the percent sign.

PERCENTRANK.INC and PERCENTRANK.EXC
Excel’s two PERCENTRANK formulas tell you a given score’s percentile. The INC 
version returns percentile in terms of “greater than or equal to.” The EXC version 
returns percentile in terms of “greater than.”

Again, I illustrate the difference with a worksheet that pits one against the other. 
Figure 6-8 shows scores (in descending order) in column C, inclusive percentile 
ranks in column D, and exclusive percentile ranks in column E.  Note that the 
inclusive percentile rank of the highest score (80) is 1 and the exclusive percentile 
rank is 0.937. The inclusive rank of the lowest score (22) is 0, and the exclusive 
rank is 0.062.

Follow these steps for using PERCENTRANK.INC:

1. Enter your data into a worksheet and select a cell.

From the Statistics menu, choose PERCENTRANK.INC to open the 
PERCENTRANK.INC Function Arguments dialog box.

FIGURE 6-8: 
PERCENTRANK.

INC versus 
PERCENTRANK. 

EXC.
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2. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

Figure 6-9 shows the data, the selected cell, and the PERCENTRANK.INC 
Function Arguments dialog box. I typed C2:C16 into the Range box and C2 into 
the X box. C2 contains the score whose percent rank I want to calculate. The 
Significance box is for the number of significant figures in the answer. Leaving 
this box vacant returns three significant figures.

3. Click OK to put the percentile into the selected cell.

Follow a similar set of steps for PERCENTRANK.EXC.

Data analysis tool: Rank and Percentile
As the name of this section indicates, Excel provides a data analysis tool that cal-
culates ranks and percentiles of each score in a group. The Rank and Percentile 
tool calculates both at the same time, so it saves you some steps versus using the 
separate worksheet functions. (See Chapter 2 for more on how to install Excel’s 
data analysis tools.) In Figure  6-10, I take the exam scores from the z-score 
example and open the Rank and Percentile dialog box. (Mac and iPad users:  
StatPlus provides a Rank and Percentile tool in the Nonparametric category.)

Here are the steps for using Rank and Percentile:

1. Type your data into an array.

In this example, the data are in cells C2 through C22.

2. From the Tools menu, choose Data Analysis to open the Data Analysis 
dialog box.

FIGURE 6-9: 
The PERCEN-

TRANK.INC 
Function 

Arguments 
dialog box.
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3. In the Data Analysis dialog box, select Rank and Percentile.

4. Click OK to open the Rank and Percentile dialog box.

5. In the Rank and Percentile dialog box, enter the data array into the Input 
Range box. Make sure it’s in absolute reference format.

In this example, a label is in the first row (in cell C1). I want the label included in 
the output, so I enter $C$1:$C$32 in the Input Range box, and I select the 
Labels in First Row check box.

6. Select the Columns radio button to indicate that the data are organized 
by columns.

7. Select the New Worksheet Ply radio button to create a new tabbed page 
in the worksheet, and to send the results to the newly created page.

8. Click OK to close the dialog box, and then open the newly created page to 
see the results.

Figure 6-11 shows the new page with the results. The table orders the scores from 
highest to lowest, as the Score column shows along with the Rank column. The 
Point column tells you the score’s position in the original grouping. For example, 
the 98 in cell B2 is the 14th score in the original data. The Percent column gives 
the percentile for each score, the same way PERCENTILE.INC does.

FIGURE 6-10: 
The Rank and 

Percentile 
analysis tool.
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FIGURE 6-11: 
The output of the 

Rank and 
Percentile 

analysis tool.
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Chapter 7
Summarizing It All

Measures of central tendency and variability are excellent ways of sum-
marizing a set of scores. They aren’t the only ways, though: Central 
tendency and variability make up a subset of descriptive statistics. Some 

descriptive statistics are intuitive — like count, maximum, and minimum. Some 
are not — like skewness and kurtosis.

In this chapter, I discuss descriptive statistics, and I show you Excel’s capabilities 
for calculating them and visualizing them.

Counting Out
The most fundamental descriptive statistic I can imagine is the number of scores 
in a set of scores. Excel offers five ways to determine that number. Yes, five ways. 
Count them.

COUNT, COUNTA, COUNTBLANK,  
COUNTIF, COUNTIFS
Given an array of cells, COUNT gives you the amount of those cells that contain 
numerical data. Figure 7-1 shows that I’ve entered a group of scores, selected a 
cell to hold COUNT’s result, and opened the Function Arguments dialog box for 
COUNT.

IN THIS CHAPTER

 » Working with things great and small

 » Understanding symmetry, peaks, and 
plateaus

 » Getting descriptive

 » Serving up statistics on a tray
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Here are the steps:

1. Enter your data into the worksheet and select a cell for the result.

I entered data into columns C, D, and E to show off COUNT’s multi-argument 
capability. I selected cell C14 to hold the count.

2. From the Statistical Functions menu, select COUNT and click OK to open 
the Function Arguments dialog box for COUNT.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Number1 box, I entered one of the data columns for this example — 
C1:C12, to be precise.

I clicked in the Number2 box and entered another data column — D1:D6.

I clicked in the Number3 box and entered the last column, which in this 
example is E1:E2.

4. Click OK to put the result in the selected cell.

COUNTA works like COUNT, except that its tally includes cells that contain text and 
logical values in its tally.

COUNTBLANK counts the number of blank cells in an array. In Figure 7-2, I use the 
numbers from the preceding example, but I extend the array to include cells D7 
through D12 and E3 through E12. The array in the Range box is C1:E12. The Argu-
ment Functions dialog box for COUNTBLANK shows the number of blank cells (16, in 
this example).

COUNTIF shows the number of cells whose value meets a specified criterion. 
Figure 7-3 reuses the data once again, showing the Arguments Function dialog 
box for COUNTIF. Although the range is C1:E12, COUNTIF doesn’t include blank cells.

FIGURE 7-1: 
The Function 

Arguments dialog 
box for COUNT, 

showing multiple 
arguments.
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The criterion I used, >= 89, tells COUNTIF to count only the cells whose values are 
greater than or equal to 89. For this example, that count is 2.

This probably won’t make much difference as you use the COUNTIF function, but a 
little quirk of Excel shows up here: If you put double quotes around the criterion, 
the result appears in the dialog box before you click OK. If you don’t, it doesn’t. If 
you click OK without quoting, Excel supplies the quotes, the result appears in the 
selected cell, and Excel applies the quotes.

COUNTIFS can use multiple criteria to determine the count. If the criteria come 
from two arrays, they must have the same number of cells. This is because COUN-
TIFS counts pairs of cells. It includes a pair of cells in the count if one cell meets 
a criterion and the other meets another criterion. Take a look at Figure 7-4.

In this example, COUNTIFS operates in C1:C6 and D1:D6. The criterion for the cells 
in column C is >=40. The criterion for the cells in column D is >50. This means 
that COUNTIFS counts cell-pairs whose C cell holds a value greater than or equal to 
40 and whose D cell holds a value greater than 50.

FIGURE 7-2: 
COUNTBLANK 

tallies the blank 
cells in a specified 

array.

FIGURE 7-3: 
COUNTIF tallies 

the number of 
cells whose data 
meet a specified 

criterion.
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You can use a cell range more than once in COUNTIFS. For example,

=COUNTIFS(C1:C12,">30",C1:C12,"<60")

gives the number of cells in which the value is between 30 and 60 (not including 
30 or 60).

The Long and Short of It
Two more descriptive statistics that probably require no introduction are the 
maximum and the minimum. These, of course, are the largest value and the 
smallest value in a group of scores.

MAX, MAXA, MIN, and MINA
Excel has worksheet functions that determine a group’s largest and smallest val-
ues. I show you what MAX is all about. The others work in a similar fashion.

Figure 7-5 reuses the scores from the preceding examples.

I selected a cell to hold their maximum value and opened the Function Arguments 
dialog box for MAX. Here are the steps you can follow:

1. Type your data into the worksheet and select a cell to hold the result.

I entered data into columns C, D, and E to show off MAX’s multi-argument 
capability. For this example, I selected cell C14 to hold the result.

2. From the Statistical Functions menu, select MAX to open the Function 
Arguments dialog box for MAX.

FIGURE 7-4: 
Working with 
COUNTIFS.
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3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Number1 box, I entered one of the data columns: C1:C12.

Clicking the Number2 box opens the Number3 box. In the Number2 box,  
I entered another array: D1:D6.

I clicked in the Number3 box and entered the last array: E1:E2.

4. Click OK to put the result in the selected cell.

MAX ignores any text or logical values it encounters along the way. MAXA takes text 
and logical values into account when it finds the maximum. If MAXA encounters 
the logical value TRUE, it converts that value to 1. MAXA converts FALSE, or any text 
other than “TRUE”, to 0.

MIN and MINA work the same way as MAX and MAXA, except that they find the mini-
mum rather than the maximum. Take care when you use MINA, because the con-
versions of logical values and text to 0 and 1 influence the result. With the numbers 
in the preceding example, the minimum is 22. If you enter FALSE or other text into 
a cell in any of the arrays, MINA gives 0 as the minimum. If you enter TRUE, MINA 
gives 1 as the minimum.

Getting Esoteric
In this section, I discuss some little-used statistics that are related to the mean 
and the variance. For most people, the mean and the variance are enough to 
describe a set of data. These other statistics, skewness and kurtosis, go just a bit 
further. You might use them someday if you have a huge set of data and you want 
to provide some in-depth description.

FIGURE 7-5: 
The Function 

Arguments dialog 
box for MAX.
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Think of the mean as locating a group of scores by showing you where their center 
is. This is the starting point for the other statistics. With respect to the mean:

 » The variance tells you how spread out the scores are.

 » Skewness indicates how symmetrically the scores are distributed.

 » Kurtosis shows you whether or not the scores are distributed with a peak in 
the neighborhood of the mean.

Skewness and kurtosis are related to the mean and variance in fairly involved 
mathematical ways. The variance involves the sum of squared deviations of scores 
around the mean. Skewness depends on cubing the deviations around the mean 
before you add them all up. Kurtosis takes it all to a higher power — the fourth 
power, to be exact. I get more specific in the subsections that follow.

SKEW and SKEW.P
Figure 7-6 shows three histograms. The first is symmetric; the other two are not. 
The symmetry and the asymmetry are reflected in the skewness statistic.

FIGURE 7-6: 
Three histograms, 

showing three 
kinds of 

skewness.
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For the symmetric histogram, the skewness is 0. For the second histogram — the 
one that tails off to the right — the value of the skewness statistic is positive. It’s 
also said to be skewed to the right. For the third histogram (which tails off to the 
left), the value of the skewness statistic is negative. It’s also said to be skewed to 
the left.

Where do zero, positive, and negative skew come from? They come from this 
formula:

skewness
X X

N s

3

31

In the formula, X  is the mean of the scores, N is the number of scores, and s is the 
standard deviation. This formula is for the skewness of a sample. The formula for 
the skewness in a population uses N rather than N-1.

I include this formula for completeness. If you’re ever concerned with skewness 
of a sample, you probably won’t use this formula anyway, because Excel’s SKEW 
function does the work for you.

To use SKEW:

1. Type your numbers into a worksheet and select a cell for the result.

For this example, I’ve entered scores into the first ten rows of columns B, C, D, 
and E. (See Figure 7-7.) I selected cell H2 for the result.

2. From the Statistical Functions menu, choose SKEW to open the Function 
Arguments dialog box for SKEW.

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the Number1 box, enter the array of cells that holds the data. For this 
example, the array is B1:E10. With the data array entered, the Function 
Arguments dialog box shows the skewness, which for this example is negative.

4. Click OK to put the result into the selected cell.

The Function Arguments dialog box for SKEW.P (the skewness of a population) 
looks the same. As I mention earlier, population skewness incorporates N rather 
than N-1.



148      PART 2  Describing Data

KURT
Figure 7-8 shows two histograms. The first has a peak at its center; the second is 
flat. The first is said to be leptokurtic. its kurtosis is positive. The second is platykur-
tic; its kurtosis is negative.

Negative? Wait a second. How can that be? I mention earlier that kurtosis involves 
the sum of fourth powers of deviations from the mean. Because four is an even 
number, even the fourth power of a negative deviation is positive. If you’re adding 
all positive numbers, how can kurtosis ever be negative?

Here’s how. The formula for kurtosis is

kurtosis
X X

N s

2

41
3

FIGURE 7-7: 
Using the SKEW 

function to 
calculate 

skewness.

FIGURE 7-8: 
Two histograms, 

showing two 
kinds of kurtosis.
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where X  is the mean of the scores, N is the number of scores, and s is the standard 
deviation.

Uh, why 3? The 3 comes into the picture because that’s the kurtosis of something 
special called the standard normal distribution. (I discuss normal distributions at 
length in Chapter  8.) Technically, statisticians refer to this formula as kurtosis 
excess — meaning that it shows the kurtosis in a set of scores that’s in excess of 
the standard normal distribution’s kurtosis. If you’re about to ask the question 
“Why is the kurtosis of the standard normal distribution equal to 3?” don’t ask.

This is another formula you’ll probably never use because Excel’s KURT function 
takes care of business. Figure 7-9 shows the scores from the preceding example, 
a selected cell, and the Function Arguments dialog box for KURT.

To use KURT,

1. Enter your numbers into a worksheet and select a cell for the result.

For this example, I enter scores into the first ten rows of columns B, C, D, and 
E. I select cell H2 for the result.

2. From the Statistical Functions menu, select KURT to open the Function 
Arguments dialog box for KURT (refer to Figure 7-9).

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Number1 box, I enter the array of cells that holds the data. Here, the 
array is B1:E10. With the data array entered, the Function Arguments dialog 
box shows the kurtosis, which for this example is negative.

4. Click OK to put the result into the selected cell.

FIGURE 7-9: 
Using KURT to 

calculate kurtosis.
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Tuning In the Frequency
Although the calculations for skewness and kurtosis are all well and good, it’s 
helpful to see how the scores are distributed. To do this, you create a frequency 
distribution, a table that divides the possible scores into intervals and shows the 
number (the frequency) of scores that fall into each interval.

Excel gives you two ways to create a frequency distribution. One is a worksheet, 
and the other is a data analysis tool.

FREQUENCY
I show you the FREQUENCY worksheet function in Chapter  2, when I introduce 
array functions. Here, I give you another look. In the upcoming example, I reuse 
the data from the skewness and kurtosis discussions so that you can see what the 
distribution of those scores looks like.

Figure 7-10 shows the data once again, along with a selected array, labeled Fre-
quency. I’ve also added the label Intervals to a column, and in that column I put 
the interval boundaries. Each number in that column is the upper bound of an 
interval. The figure also shows the Function Arguments dialog box for 
FREQUENCY.

Here are the steps:

1. Enter the scores into an array of cells.

The array, as in the preceding examples, is B1:E10.

FIGURE 7-10: 
Finding the 

frequencies in an 
array of cells.
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2. Enter the intervals into an array.

I entered 5, 10, 15, 20, 25, and 30 into G2:G7.

3. Select a cell to start the output array.

I put Frequency as the label at the top of column H, so I selected H2.

4. From the Statistical Functions menu, select FREQUENCY to open the 
Function Arguments dialog box for FREQUENCY.

5. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Data_array box, I entered the cells that hold the scores. In this example, 
that’s B1:E10.

FREQUENCY refers to intervals as bins and holds the intervals in the Bins_array 
box. For this example, G2:G7 goes into the Bins_array box.

After I identified both arrays, the Function Arguments dialog box shows the 
frequencies inside a pair of curly brackets. Look closely again at Figure 7-10 
and you see that Excel adds a frequency of 0 to the end of the set of frequen-
cies between the curly brackets in the third line of the dialog box.

6. Click OK to close the Function Arguments dialog box.

When you close the Function Arguments dialog box, the frequencies spill into the 
appropriate cells, as Figure 7-11 shows. Corresponding with the appended zero  
I mention in Step 5, Figure 7-11 shows the appended zero in cell H8.

If I had assigned the name Data to B1:E10 and the name Interval to G2:G7, and 
used those names in the Function Arguments dialog box, the resulting formula 
would have been

=FREQUENCY(Data,Interval)

FIGURE 7-11: 
FREQUENCY’s 

frequencies.
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which might be easier to understand than

=FREQUENCY(B1:E10,G2:G7)

(Don’t remember how to assign a name to a range of cells? Take a look at 
Chapter 2.)

Data analysis tool: Histogram
Here’s another way to create a frequency distribution — with the Histogram data 
analysis tool. To show you that the two methods are equivalent, I use the data 
from the FREQUENCY example. Figure 7-12 shows the data along with the Histo-
gram dialog box.

The steps are:

1. Enter the scores into an array and enter intervals into another array.

2. Choose Data ➪   Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. From the Analysis Tools menu, select Histogram to open the Histogram 
dialog box.

4. In the Histogram dialog box, enter the appropriate values.

The data are in cells B1 through E10, so B1:E10 goes into the Input Range box. 
The easiest way to enter this array is to click in B1, press and hold the Shift key, 

FIGURE 7-12: 
The Histogram 

analysis tool.
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and then click in E10. Excel puts the absolute reference format ($B$1:$E$10) 
into the Input Range box.

In the Bin Range box, I enter the array that holds the intervals. In this example, 
that’s G2 through G7. I click in G2, press and hold the Shift key, and then click in 
G7. The absolute reference format ($G$2:$G$7) appears in the Bin Range box.

5. Select the New Worksheet Ply radio button to create a new worksheet 
and to put the results on the new worksheet.

6. Select the Chart Output check box to create a histogram and visualize 
the results.

7. Click OK to close the dialog box.

Figure  7-13 shows Histogram’s output. The table matches up with what FRE-
QUENCY produces. Notice that Histogram adds More to the Bin column (Cell A8, to 
be precise). The size of the histogram is somewhat smaller when it first appears. 
I used the mouse to stretch the histogram and give it the appearance you see in the 
figure. The histogram shows that the distribution tails off to the left (consistent 
with the negative skewness statistic) and seems to not have a distinctive peak 
(consistent with the negative kurtosis statistic). Notice also the chart toolset (the 
three icons) that appears to the right of the histogram. The tools enable you to 
modify the histogram in a variety of ways. (For more on working with histograms, 
see Chapter 3.)

By the way, the other check box options in the Histogram dialog box are Pareto 
(sorted histogram) and Cumulative Percentage. The Pareto option sorts the inter-
vals in order, from highest frequency to lowest, before creating the graph. The 
Cumulative Percentage option shows the percentage of scores in an interval com-
bined with the percentages in all the preceding intervals. Selecting this check box 
also puts a cumulative percentage line in the histogram.

FIGURE 7-13: 
The Histogram 

tool’s output 
(after stretching 

the chart).
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Can You Give Me a Description?
If you’re dealing with individual descriptive statistics, the worksheet functions I 
discuss get the job done nicely. If you want an overall report that presents nearly 
all the descriptive statistical information in one place, use the Data Analysis tool I 
describe in the next section.

Data analysis tool: Descriptive Statistics
In Chapter 2, I show you the Descriptive Statistics tool to introduce Excel’s data 
analysis tools. Here’s a slightly more complex example. Figure 7-14 shows three 
columns of scores and the Descriptive Statistics dialog box. I’ve labeled the col-
umns First, Second, and Third so that you can see how this tool incorporates 
labels.

Here are the steps for using this tool:

1. Enter the data into an array.

2. Choose Data ➪   Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. From the Analysis Tools menu, choose Descriptive Statistics to open the 
Descriptive Statistics dialog box.

4. In the Descriptive Statistics dialog box, enter the appropriate values.

In the Input Range box, I enter the data. The easiest way to do this is to move 
the cursor to the upper left cell (C1), press the Shift key, and click in the lower 
right cell (E9). That puts $C$1:$E$9 into the Input Range box.

FIGURE 7-14: 
The Descriptive 
Statistics tool at 

work.



CHAPTER 7  Summarizing It All      155

5. Select the Columns radio button to indicate that the data are organized 
by column.

6. Select the Labels in First Row check box because the input range includes 
the column headings.

7. Select the New Worksheet Ply radio button to

• Create a new worksheet within the current workbook

• Send the results to the newly created worksheet

8. Select the Summary Statistics check box and leave the others deselected.

9. Click OK to close the dialog box.

The new tabbed sheet (ply) opens, displaying statistics that summarize the 
data.

As Figure 7-15 shows, the statistics summarize each column separately. (When 
this page first opens, the columns that show the statistic names are too 
narrow, so the figure shows what the page looks like after I widen the 
columns.)

The Descriptive Statistics tool gives values for these statistics: mean, standard 
error, median, mode, standard deviation, sample variance, kurtosis, skewness, 
range, minimum, maximum, sum, and count. Except for standard error and range, 
I discuss all of them.

Range is just the difference between the maximum and the minimum. Standard 
error is more involved, and I defer the explanation until Chapter 9. For now, I’ll 
just say that standard error is the standard deviation divided by the square root of 
the sample size and leave it at that.

FIGURE 7-15: 
The Descriptive 
Statistics tool’s 

output.
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By the way, one check box left deselected in Step 8 of the example provides some-
thing called the confidence limit for the mean, which I also defer until Chapter 9. 
The remaining two check boxes, Kth Largest and Kth Smallest, work like the 
functions LARGE and SMALL.

Be Quick About It!
Quick Analysis was a wonderful addition to Excel 2013, but it still hasn’t made its 
way to the Mac. You select a range of data, and an icon appears in the lower right 
corner of the selection. Clicking the icon (or pressing Ctrl+Q) opens numerous 
possibilities for visualizing and summarizing the selected data. Mousing over 
these possibilities gives you a preview of what they look like. Selecting one puts it 
into your worksheet.

The worksheet in Figure 7-16 shows the percentages by age group that used the 
indicated media in 2006 (source: US Statistical Abstract). I selected the data, which 
caused the Quick Analysis icon to appear. Clicking the icon opened the panel with 
its accompanying options.

Figure 7-17 shows what happens when I mouse over Formatting and hold over 
Data Bars.

Want to see what a column chart looks like? Mouse over Charts and hold over 
Clustered Column. (See Figure 7-18.)

How about inserting the means? That means mousing over Totals and holding 
over Average, as shown in Figure 7-19.

FIGURE 7-16: 
Selected data, the 

Quick Analysis 
icon, and the 

panel of options 
for visualizing 

and summarizing 
the data.
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FIGURE 7-17: 
Mousing over 

Formatting | Data 
Bars.

FIGURE 7-18: 
Mousing over 

Charts | 
Clustered 

Column.

FIGURE 7-19: 
Mousing over 

Totals | Average.
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I could go on all day with this, but I’ll show you just a couple more. If you want to 
add some professional looking table effects to the selection, try the Tables/Table 
combination. (See Figure 7-20.)

I couldn’t finish off this topic without taking a look at the sparklines in Quick 
Analysis. When I mouse over Sparklines and hold over Column, the result is 
Figure  7-21. The columns give a concise look at important age related trends: 
Contrast the Internet sparkline with the sparklines for Newspapers and TV.

FIGURE 7-20: 
Mousing over 

Tables | Table.

FIGURE 7-21: 
Mousing over 

Sparklines | 
Column.
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Instant Statistics
Suppose that you’re working with a cell range full of data. You might like to 
quickly know the status of the average and perhaps some other descriptive statis-
tics about the data without going to the trouble of using several statistical func-
tions. You can customize the status bar at the bottom of the worksheet (on 
Windows as well as on a Mac) to track these values for you and display them 
whenever you select the cell range. To do this, right-click the status bar to open 
the Customize Status Bar menu. (See Figure 7-22.) In the area third from the bot-
tom, selecting all the items displays the values I mention in the preceding section 
(along with the count of items in the range — numerical and non-numerical).

Figure 7-23 shows these values displayed on the status bar for the cells I selected.

FIGURE 7-22: 
The Customize 

status bar menu.
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FIGURE 7-23: 
Displaying values 
on the status bar.
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Chapter 8
What’s Normal?

A main job of statisticians is to estimate population characteristics. The job 
becomes easier if they can make some assumptions about the populations 
they study.

One particular assumption works over and over again: A specific attribute, trait, or 
ability is distributed throughout a population so that most people have an average 
or near average amount of the attribute, and progressively fewer people have 
increasingly extreme amounts of the attribute. In this chapter, I discuss this 
assumption and what it means for statistics. I also describe Excel functions related 
to this assumption.

Hitting the Curve
When you measure something in the physical world, like length or weight, you 
deal with objects you can see and touch. Statisticians, social scientists, market 
researchers, and businesspeople, on the other hand, often have to measure some-
thing they can’t see or put their hands around. Traits like intelligence, musical 
ability, or willingness to buy a new product fall into this category.

These kinds of traits are usually distributed throughout the population so that 
most people are around the average — with progressively fewer people repre-
sented toward the extremes. Because this happens so often, it’s become an 
assumption about how most traits are distributed.

IN THIS CHAPTER

 » Meeting the normal distribution 
family

 » Working with standard deviations 
and normal distributions

 » Understanding Excel’s normal 
distribution-related functions



162      PART 2  Describing Data

It’s possible to capture the most-people-are-about-average assumption in a 
graphical way. Figure 8-1 shows the familiar bell curve that characterizes how a 
variety of attributes are distributed. The area under the curve represents the pop-
ulation. The horizontal axis represents measurements of the ability under consid-
eration. A vertical line drawn down the center of the curve would correspond to 
the average of the measurements.

So, if you assume that it’s possible to measure a trait like intelligence, and if you 
assume this curve represents how intelligence is distributed in the population, 
you can say this: The bell curve shows that most people have about average intel-
ligence, very few have very little intelligence, and very few are geniuses. That 
seems to fit nicely with our intuitions about intelligence, doesn’t it?

Digging deeper
On the horizontal axis of Figure 8-1, you see x, and on the vertical axis, f(x). What 
do these symbols mean? The horizontal axis, as I mention, represents measure-
ments, so think of each measurement as an x.

The explanation of f(x) is a little more involved. A mathematical relationship 
between x and f(x) creates the bell curve and enables us to visualize it. The 

FIGURE 8-1: 
The bell curve.
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relationship is rather complex, and I won’t burden you with it. Just understand 
that f(x) represents the height of the curve for a specified value of x. You supply a 
value for x (and for a couple of other things), and that complex relationship I 
mentioned returns a value of f(x).

Now for some specifics. The bell curve is formally called the normal distribution. 
The term f(x) is called probability density, so the normal distribution is an example 
of a probability density function. Rather than give you a technical definition of prob-
ability density, I ask you to think of probability density as something that turns 
the area under the curve into probability. Probability of — what? I discuss that in 
the next section.

Parameters of a normal distribution
People often speak of the normal distribution. That’s a misnomer. It’s really a 
family of distributions. The members of the family differ from one another in 
terms of two parameters — yes, parameters because I’m talking about popula-
tions. Those two parameters are the mean (μ) and the standard deviation (σ). The 
mean tells you where the center of the distribution is, and the standard deviation 
tells you how spread out the distribution is around the mean. The mean is in the 
middle of the distribution. Every member of the normal distribution family is 
symmetric — the left side of the distribution is a mirror image of the right.

The characteristics of the normal distribution are well known to statisticians. 
More important, you can apply those characteristics to your work.

How? This brings me back to probability. You can find some useful probabilities if:

 » You can lay out a line that represents the scale of the attribute 
you’re measuring

 » You can indicate on the line where the mean of the measurements is

 » You know the standard deviation

 » You know (or you can assume) the attribute is normally distributed through-
out the population

I work with IQ scores to show you what I mean. Scores on the Stanford–Binet IQ 
test follow a normal distribution. The mean of the distribution of these scores is 
100, and the standard deviation is 16. Figure 8-2 shows this distribution.
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As the figure shows, I’ve laid out a line for the IQ scale. Each point on the line 
represents an IQ score. With 100 (the mean) as the reference point, I’ve marked off 
every 16 points (the standard deviation). I’ve drawn a dotted line from the mean 
up to f100 (the height of the normal distribution where x = 100), and a dotted line 
from each standard deviation point.

The figure also shows the proportion of area bounded by the curve and the hori-
zontal axis, and by successive pairs of standard deviations. It also shows the pro-
portion beyond three standard deviations on either side (52 and 148). Note that 
the curve never touches the horizontal. It gets closer and closer, but it never 
touches. (Mathematicians say the curve is asymptotic to the horizontal.)

So, between the mean and one standard deviation — between 100 and 116 — are 
.3413 (or 34.13 percent) of the scores in the population. Another way to say this: 
The probability that an IQ score is between 100 and 116 is .3413. At the extremes, 
in the tails of the distribution, .0013 (.13 percent) of the scores are on each side.

The proportions in Figure 8-2 hold for every member of the normal distribution 
family, not just for Stanford-Binet IQ scores. For example, in a sidebar in 
 Chapter 6, I mention SAT scores, which (under the old scoring system) have a 
mean of 500 and a standard deviation of 100. They’re normally distributed, too. 
That means 34.13 percent of SAT scores are between 500 and 600, 34.13 percent 
between 400 and 500, and, well, you can use Figure  8-2 as a guide for other 
proportions.

FIGURE 8-2: 
The normal 

distribution of IQ, 
divided into 

standard 
deviations.
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NORM.DIST
Figure  8-2 only shows areas partitioned by scores at the standard deviations. 
What about the proportion of IQ scores between 100 and 125? Or between 75 and 
91? Or greater than 118? If you’ve ever taken a course in statistics, you might 
remember homework problems that involve finding proportions of areas under 
the normal distribution. You might also remember relying on tables of the normal 
distribution to solve them.

Excel’s NORM.DIST worksheet function enables you to find normal distribution 
areas without relying on tables. NORM.DIST finds a cumulative area. You supply a 
score, a mean, and a standard deviation for a normal distribution and NORM.DIST 
returns the proportion of area to the left of the score (also called cumulative pro-
portion or cumulative probability). For example, Figure 8-2 shows that, in the IQ 
distribution, .8413 of the area is to the left of 116.

How did I get that proportion? All the proportions to the left of 100 add up to 
.5000. All the proportions to the right of 100 add up to .5000 as well. Add that 
.5000 to the .3413 between 100 and 116 and you have .8413.

Restating this another way, the probability of an IQ score less than or equal to 116 
is .8413.

In Figure 8-3, I use NORM.DIST to find this proportion. Here are the steps:

1. Select a cell for NORM.DIST’s answer.

For this example, I selected C2.

2. From the Statistical Functions menu, select NORM.DIST to open the 
Function Arguments dialog box for NORM.DIST.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the X box, I entered the score for which I want to find the cumulative area. In 
this example, that’s 116.

In the Mean box, I entered the mean of the distribution, and in the Standard_
dev box, I entered the standard deviation. Here, the mean is 100 and the 
standard deviation is 16.

In the Cumulative box, I entered TRUE. This tells NORM.DIST to find the 
cumulative area. The dialog box shows the result.

4. Click OK to see the result in the selected cell.
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Figure 8-3 shows that the cumulative area is .84134476 (in the dialog box). If you 
enter FALSE in the Cumulative box, NORM.DIST returns the height of the normal 
distribution at 116.

To find the proportion of IQ scores greater than 116, subtract the result from 1.0. 
(Just for the record, that’s .15865524.)

Figure 8-4 shows how all this looks in Excel on the Mac. The Formula Builder is 
Mac’s equivalent of the Windows Function Arguments dialog box.

FIGURE 8-3: 
Working with 
NORM.DIST.

FIGURE 8-4: 
Working with 

NORM.DIST on 
the Mac.
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How about the proportion of IQ scores between 116 and 125? Apply NORM.DIST for 
each score and subtract the results. For this particular example, the formula is

=NORM.DIST(125,100,16,TRUE)-NORM.DIST(116,100,16,TRUE)

The answer, by the way, is .09957.

NORM.INV
NORM.INV is the flip side of NORM.DIST. You supply a cumulative probability, a 
mean, and a standard deviation, and NORM.INV returns the score that cuts off the 
cumulative probability. For example, if you supply .5000 along with a mean and a 
standard deviation, NORM.INV returns the mean.

This function is useful if you have to calculate the score for a specific percentile in 
a normal distribution. Figure 8-5 shows the Function Arguments dialog box for 
NORM.INV with .75 as the cumulative probability, 500 as the mean, and 100 as the 
standard deviation. Because the SAT follows a normal distribution with 500 as its 
mean and 100 as its standard deviation, the result corresponds to the score at the 
75th percentile for the SAT. (For more on percentiles, see Chapter 6.)

Figure 8-6 gives you a look at NORM.INV on the iPad. Note that the iPad version of 
Excel doesn’t work with dialog boxes (or with Formula Builders). Instead, you tap 
buttons on the Formula bar to enter the values for arguments.

FIGURE 8-5: 
Working with 
NORM.INV.

FIGURE 8-6: 
Working with 
NORM.INV on 

the iPad.
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A Distinguished Member of the Family
To standardize a set of scores so that you can compare them to other sets of 
scores, you convert each one to a z-score. (See Chapter 6.) The formula for con-
verting a score to a z-score (also known as a standard score) is

z x

The idea is to use the standard deviation as a unit of measure. For example, the 
Stanford-Binet version of the IQ test has a mean of 100 and a standard deviation 
of 16. The Wechsler version has a mean of 100 and a standard deviation of 15. How 
does a Stanford-Binet score of, say, 110, stack up against a Wechsler score of 110?

An easy way to answer this question is to put the two versions on a level playing 
field by standardizing both scores.

For the Stanford-Binet:

z 110 100
16

625.

For the Wechsler:

z 110 100
15

667.

So, 110 on the Wechsler is a slightly higher score than 110 on the Stanford-Binet.

Now, if you convert all the scores in a normal distribution (such as either version 
of the IQ test), you have a normal distribution of z-scores. Any set of z-scores 
(normally distributed or not) has a mean of 0 and a standard deviation of 1. If a 
normal distribution has those parameters, it’s a standard normal distribution — a 
normal distribution of standard scores.

This is the member of the normal distribution family that most people have heard 
of. It’s the one they remember most from statistics courses, and it’s the one that 
most people are thinking about when they (mistakenly) say the normal distribu-
tion. It’s also what people think of when they hear z-scores. This distribution leads 
many to the mistaken idea that converting to z-scores somehow transforms a set 
of scores into a normal distribution.

Figure 8-7 shows the standard normal distribution. It looks like Figure 8-2, except 
that I’ve substituted 0 for the mean and entered standard deviation units in the 
appropriate places.
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In the next two sections, I describe Excel’s functions for working with the stan-
dard normal distribution.

NORM.S.DIST
NORM.S.DIST is like its counterpart NORM.DIST, except that it’s designed for a nor-
mal distribution whose mean is 0 and whose standard deviation is 1.00 (that is, a 
standard normal distribution). You supply a z-score and it returns the area to the 
left of the z-score — the probability that a z-score is less than or equal to the one 
you supplied. You also supply either TRUE or FALSE for an argument called Cumula-
tive: TRUE if you’re looking for the cumulative probability, FALSE if you’re trying 
to find f(x).

Figure 8-8 shows the Function Arguments dialog box with 1 as the z-score and 
TRUE in the Cumulative box. The dialog box presents .841344746, the probability 
that a z-score is less than or equal to 1.00 in a standard normal distribution. Click-
ing OK puts that result into a selected cell.

FIGURE 8-7: 
The standard 

normal 
 distribution, 

divvied up by 
standard 

deviations.
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NORM.S.INV
NORM.S.INV is the flip side of NORM.S.DIST: You supply a cumulative probability, 
and NORM.S.INV returns the z-score that cuts off the cumulative probability. For 
example, if you supply .5000, NORM.S.INV returns 0, the mean of the standard 
normal distribution.

Figure 8-9 shows the Function Arguments dialog box for NORM.S.INV, with .75 as 
the cumulative probability. The dialog box shows the answer, .67448975, the 
z-score at the 75th percentile of the standard normal distribution.

PHI and GAUSS
These two worksheet functions work with the standard normal distribution. Each 
takes one argument.

=PHI(x)

returns the height (that is, the probability density) of the standard normal distri-
bution at x.

=GAUSS(x)

FIGURE 8-8: 
Working with 

NORM.S.DIST.

FIGURE 8-9: 
Working with 

NORM.S.INV.
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returns 0.5 less than the cumulative probability of x (in the standard normal 
distribution). This is often useful if you quickly have to find the cumulative prob-
ability on just one side of the distribution and you don’t feel like using NORM.S.DIST, 
supplying all its arguments, and then subtracting 0.5.

Graphing a Standard Normal Distribution
In my experience, graphing a distribution helps you understand it. So, in this sec-
tion, I walk you through visualizing a standard normal distribution.

The relationship between x and f(x) for the general formula of a normal distribu-
tion is, as I mention earlier in this chapter, a complex one. Here’s the equation:

f x e

x

1
2

2

22

If you supply values for μ (the mean), σ (the standard deviation), and x (a score), 
the equation gives you back a value for f(x) — the height of the normal distribu-
tion at x. The constants π and e are important in mathematics: π is approximately 
3.1416 (the ratio of a circle’s circumference to its diameter), and e is approxi-
mately 2.71828. It’s related to something called natural logarithms and to a vari-
ety of other mathematical concepts. (I tell you more about logarithms and e in 
Chapter 23.)

In a standard normal distribution, μ = 0 and σ = 1, so the equation becomes

f z e
z

1
2

2

2

I changed the x to z because you deal with z-scores in this member of the normal 
distribution family.

As for the graphing part, begin by putting z-scores from –4 to 4 (in steps of .2) in 
the cells in column B.

Next, in cell C2, type the standard normal distribution equation as an Excel 
formula:

=((1/SQRT(2*PI())))*EXP(-(B2^2)/2)

PI() is an Excel function that gives the value of π. The function EXP() raises e to 
the power indicated by what’s in the parentheses that follow it. (Again, see 
Chapter 23.)
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That’s the hard, mathy way to do it. The worksheet function PHI, which I mention 
earlier, offers a much easier way to supply the f(z) values. If you enter this formula 
into C2

=PHI(B2)

you get the same result as typing in the complicated equation.

The next step is to autofill column C. Then choose Insert | Recommended Charts | 
All Charts | Scatter with Smooth Lines.

You have to do a little more work to get the chart to appear as shown in Figure 8-10. 
(See Chapter 3 for more on Excel graphics.) As Figure 8-8 shows, this layout nicely 
traces out the standard normal distribution from z = -4 to z = 4. (The figure also 
shows the autofilled values.)

Note that the Excel formula shown here in the Formula bar corresponds to the 
standard normal distribution equation [=((1/SQRT(2*PI())))*EXP(-(B2^2)/2)] 
I mention earlier.

I show you all of this because I want you to get accustomed to visualizing impor-
tant distributions. I do that throughout the rest of the book.

FIGURE 8-10: 
The completed 

graph of the 
standard normal 

distribution.
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Chapter 9
The Confidence Game: 
Estimation

Populations and samples are pretty straightforward ideas. A population is a 
huge collection of individuals, from which you draw a sample. Assess the 
members of the sample on some trait or attribute, calculate statistics that 

summarize that sample, and you’re in business.

In addition to summarizing the scores in the sample, you can use the statistics to 
create estimates of the population parameters. This is no small accomplishment. 
On the basis of a small percentage of individuals from the population, you can 
draw a picture of the population.

A question emerges, however: How much confidence can you have in the esti-
mates you create? To answer this question, you have to have a context in which to 
place your estimates. How probable are they? How likely is the true value of a 
parameter to be within a particular lower bound and upper bound?

In this chapter, I introduce the context for estimates, show how that plays into 
confidence in those estimates, and describe an Excel function that enables you to 
calculate your confidence level.

IN THIS CHAPTER

 » Introducing sampling distributions

 » Understanding standard error

 » Simulating the Central Limit Theorem

 » Attaching confidence limits to 
estimates
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Understanding Sampling Distributions
Imagine that you have a population and you draw a sample from this population. 
You measure the individuals of the sample on a particular attribute and calculate 
the sample mean. Return the sample members to the population. Draw another 
sample, assess the new sample’s members, and then calculate their mean. Repeat 
this process again and again, always using the same number of individuals as you 
had in the original sample. If you could do this an infinite amount of times (with 
the same-size sample each time), you’d have an infinite amount of sample means. 
Those sample means form a distribution of their own. This distribution is called 
the sampling distribution of the mean.

For a sample mean, this is the context I mention at the beginning of this chapter. 
Like any other number, a statistic makes no sense by itself. You have to know 
where it comes from in order to understand it. Of course, a statistic comes from a 
calculation performed on sample data. In another sense, a statistic is part of a 
sampling distribution.

In general, a sampling distribution is the distribution of all possible values of a statistic 
for a given sample size.

I italicize that definition for a reason: It’s extremely important. After many years 
of teaching statistics, I can tell you that this concept usually sets the boundary line 
between people who understand statistics and people who don’t.

So: If you understand what a sampling distribution is, you’ll understand what the 
field of statistics is all about. If you don’t, you won’t. It’s almost that simple.

If you don’t know what a sampling distribution is, statistics will be a cookbook 
type of subject for you: Whenever you have to apply statistics, you plug numbers 
into formulas and hope for the best. On the other hand, if you’re comfortable with 
the idea of a sampling distribution, you grasp the big picture of inferential 
statistics.

To help clarify the idea of a sampling distribution, take a look at Figure 9-1. It 
summarizes the steps in creating a sampling distribution of the mean.

A sampling distribution — like any other group of scores — has a mean and a 
standard deviation. The symbol for the mean of the sampling distribution of the 
mean (yes, I know that’s a mouthful) is x .

The standard deviation of a sampling distribution is a hot item. It has a special 
name: standard error. For the sampling distribution of the mean, the standard 
deviation is called the standard error of the mean. Its symbol is x .
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An EXTREMELY Important Idea: The 
Central Limit Theorem

The situation I ask you to imagine in the previous section is one that never hap-
pens in the real world. You never take an infinite amount of samples and calculate 
their means, and you never create a sampling distribution of the mean. Typically, 
you draw one sample and calculate its statistics.

So, if you have only one sample, how can you ever know anything about a sampling 
distribution — a theoretical distribution that encompasses an infinite number of 
samples? Is this all just a wild goose chase?

No, it’s not. You can figure out a lot about a sampling distribution because of a 
great gift from mathematicians to the field of statistics. This gift is called the 
Central Limit Theorem.

FIGURE 9-1: 
The sampling 

distribution  
of the mean.
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According to the Central Limit Theorem:

 » The sampling distribution of the mean is approximately a normal distribution 
if the sample size is large enough.

Large enough means about 30 or more.

 » The mean of the sampling distribution of the mean is the same as the 
population mean.

In equation form, that’s

x

 » The standard deviation of the sampling distribution of the mean (also known 
as the standard error of the mean) is equal to the population standard 
deviation divided by the square root of the sample size.

The equation here is

x N

Notice that the Central Limit Theorem says nothing about the population. All it 
says is that if the sample size is large enough, the sampling distribution of the 
mean is a normal distribution, with the indicated parameters. The population that 
supplies the samples doesn’t have to be a normal distribution for the Central Limit 
Theorem to hold.

What if the population is a normal distribution? In that case, the sampling distri-
bution of the mean is a normal distribution regardless of the sample size.

Figure  9-2 shows a general picture of the sampling distribution of the mean, 
partitioned into standard error units.

(Approximately) simulating the  
Central Limit Theorem
It almost doesn’t sound right. How can a population that’s not normally distrib-
uted result in a normally distributed sampling distribution?

To give you an idea of how the Central Limit Theorem works, I created a simula-
tion. This simulation creates something like a sampling distribution of the mean 
for a very small sample, based on a population that’s not normally distributed. As 
you’ll see, even though the population isn’t a normal distribution, and even 
though the sample is small, the sampling distribution of the mean looks quite a 
bit like a normal distribution.
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Imagine a huge population that consists of just three scores — 1, 2, and 3 — and 
each one is equally likely to appear in a sample. (That kind of population is defi-
nitely not a normal distribution.) Imagine also that you can randomly select a 
sample of three scores from this population. Table 9-1 shows all possible samples 
and their means.

FIGURE 9-2: 
The sampling 

distribution  
of the mean, 
partitioned.

TABLE 9-1	 All Possible Samples of Three Scores (and Their Means)  
from a Population Consisting of the Scores 1, 2, and 3

Sample Mean Sample Mean Sample Mean

1,1,1 1.00 2,1,1 1.33 3,1,1 1.67

1,1,2 1.33 2,1,2 1.67 3,1,2 2.00

1,1,3 1.67 2,1,3 2.00 3,1,3 2.33

1,2,1 1.33 2,2,1 1.67 3,2,1 2.00

1,2,2 1.67 2,2,2 2.00 3,2,2 2.33

1,2,3 2.00 2,2,3 2.33 3,2,3 2.67

1,3,1 1.67 2,3,1 2.00 3,3,1 2.33

1,3,2 2.00 2,3,2 2.33 3,3,2 2.67

1,3,3 2.33 2,3,3 2.67 3,3,3 3.00
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If you look closely at the table, you can almost see what’s about to happen in the 
simulation. The sample mean that appears most frequently is 2.00. The sample 
means that appear least frequently are 1.00 and 3.00. Hmm. . . .

In the simulation, I randomly select a score from the population and then ran-
domly select two more. That group of three scores is a sample. Then I calculate the 
mean of that sample. I repeat this process for a total of 60 samples, resulting in 
60 sample means. Finally, I graph the distribution of the sample means.

What does the simulated sampling distribution of the mean look like? Figure 9-3 
shows a worksheet that answers this question.

In the worksheet, each row is a sample. The columns labeled x1, x2, and x3 show 
the three scores for each sample. Column E shows the average for the sample in 
each row. Column G shows all possible values for the sample mean, and column H 
shows how often each mean appears in the 60 samples. Columns G and H, and the 
graph, show that the distribution has its maximum frequency when the sample 
mean is 2.00. The frequencies tail off as the sample means moves further and fur-
ther away from 2.00.

The point of all this is that the population looks nothing like a normal distribu-
tion, and the sample size is very small. Even under those constraints, the sam-
pling distribution of the mean based on 60 samples begins to look much like a 
normal distribution.

FIGURE 9-3: 
Simulating the 

sampling 
distribution of the 
mean (N=3) from 

a population 
consisting of the 

scores 1, 2, and 3. 
The simulation 

consists of 60 
samples.
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What about the parameters the central limit theorem predicts for the sampling 
distribution? Start with the population. The population mean is 2.00, and the pop-
ulation standard deviation is .67. (This kind of population requires some slightly 
fancy mathematics for figuring out the parameters. The math is a little beyond 
where we are, so I leave it at that.)

On to the sampling distribution. When I ran this simulation, the mean of the 60 
means was 2.04, and their standard deviation (an estimate of the standard error 
of the mean) was .49. (Each time I run it, of course, I get slightly different num-
bers.) Those numbers closely approximate the central limit theorem — predicted 
parameters for the sampling distribution of the mean, 2.00 (equal to the popula-
tion mean), and .47 (the standard deviation, .67, divided by the square root of 3, 
the sample size).

In case you’re interested in doing this simulation, here are the steps:

1. Select a cell for your first randomly selected number.

I selected cell B2.

2. Use the worksheet function RANDBETWEEN to select 1, 2, or 3.

This step simulates drawing a number from a population consisting of the 
numbers 1, 2, and 3 where you have an equal chance of selecting each 
number. You can either choose Formulas ➪   Math & Trig  ➪   RANDBETWEEN 
from the main menu and then use the Function Arguments dialog box when it 
appears or just type

=RANDBETWEEN(1,3)

in B2 and press Enter. The first argument is the smallest number RANDBETWEEN 
returns, and the second argument is the largest number.

3. Select the cell to the right of the original cell and pick another random 
number between 1 and 3. Do this again for a third random number in the 
cell to the right of the second one.

The easiest way to do this is to autofill the two cells to the right of the original 
cell. In my worksheet, those two cells are C2 and D2.

4. Consider these three cells to be a sample, and calculate their mean in the 
cell to the right of the third cell.

The easiest way to do this is to just type

=AVERAGE(B2:D2)

in cell E2 and press Enter.
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5. Repeat this process for as many samples as you want to include in the 
simulation. Have each row correspond to a sample.

I used 60 samples. The quick and easy way to get this done is to select the first 
row of three randomly selected numbers and their mean and then autofill the 
remaining rows. The set of sample means in column E is the simulated 
sampling distribution of the mean. Use AVERAGE and STDEV.P to find its mean 
and standard deviation.

To see what this simulated sampling distribution looks like, use the array function 
FREQUENCY on the sample means in column E. Follow these steps:

1. Enter the possible values of the sample mean into an array.

I used column G for this. Make sure the cells are in Number format. I 
expressed the possible values of the sample mean in fraction form (3/3, 4/3, 
5/3, 6/3, 7/3, 8/3, and 9/3) as I entered them into the cells G2 through G8. Excel 
converts them to decimal form.

2. Select a cell to start the output array that will hold the frequencies of the 
possible values of the sample mean.

I designated column H to hold the frequencies, so I selected H2.

3. From the Statistical Functions menu, select FREQUENCY to open the 
Function Arguments dialog box for FREQUENCY.

4. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Data_array box, I entered the cells that hold the sample means. In this 
example, that’s E2:E61.

5. Identify the array that holds the possible values of the sample mean.

FREQUENCY holds this array in the Bins_array box. For my worksheet, G2:G8 
goes into the Bins_array box. After you identify both arrays, the Function 
Arguments dialog box shows the frequencies inside a pair of curly brackets. 
(See Figure 9-4.)

6. Click OK to close the Function Arguments dialog box and show the 
frequencies in the output array.

Finally, with H2:H8 highlighted, choose Insert | Recommended Charts from the 
main menu and then choose the Clustered Column layout from the menu that 
appears. This produces the graph of the frequencies. (Note that I modified the 
chart a bit to produce what you see in the figure — Chapter 3 has more on tweak-
ing Excel charts.) Your graph will probably look somewhat different from mine, 
because you’ll likely wind up with different random numbers than I did.
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Excel repeats the random selection process whenever you do something that 
causes Excel to recalculate the worksheet. The effect is that the numbers can 
change as you work through this (that is, as you rerun the simulation). For exam-
ple, if you go back and autofill one of the rows again, the numbers change and the 
graph changes.

The Limits of Confidence
I tell you about sampling distributions because they help you answer the question 
I pose at the beginning of this chapter: How much confidence can you have in the 
estimates you create?

The idea is to calculate a statistic and then use that statistic to establish upper and 
lower bounds for the population parameter with, say, 95 percent confidence. You 
can do this only if you know the sampling distribution of the statistic and the 
standard error. In the next section, I show how to do this for the mean.

Finding confidence limits for a mean
The FarBlonJet Corporation manufactures navigation systems. (Corporate motto: 
“If you travel, get FarBlonJet.”) The company has developed a new battery to 
power its portable model. To help market the system, FarBlonJet wants to know 
how long, on average, each battery lasts before it burns out.

Company leaders hope to estimate that average with 95 percent confidence. They 
test a sample of 100 batteries and find that the sample mean is 60 hours, with a 
standard deviation of 20 hours. The central limit theorem, remember, says that 
with a large enough sample (30 or more), the sampling distribution of the mean 

FIGURE 9-4: 
The Function 

Arguments  
dialog box for  

FREQUENCY in the 
simulated 
sampling 

distribution 
worksheet.
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approximates a normal distribution. The standard error of the mean (the standard 
deviation of the sampling distribution of the mean) is

x N

The sample size, N, is 100. What about σ? That’s unknown, so you have to estimate 
it. If you know σ, that would mean you know μ, and establishing confidence limits 
would be unnecessary.

The best estimate of σ is the standard deviation of the sample. In this case, that’s 
20. This leads to an estimate of the standard error of the mean

s s
Nx

20
100

20
10 2

The best estimate of the population mean is the sample mean, 60. Armed with this 
information — estimated mean, estimated standard error of the mean, normal 
distribution — you can envision the sampling distribution of the mean, which is 
shown in Figure 9-5. Consistent with Figure 9-2, each standard deviation is a 
standard error of the mean.

Now that you have the sampling distribution, you can establish the 95 percent 
confidence limits for the mean. Starting at the center of the distribution, how far 
out to the sides do you have to extend until you have 95 percent of the area under 

FIGURE 9-5: 
The sampling 

distribution of the 
mean for 

the FarBlonJet 
battery.
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the curve? (For more on area under a normal distribution and what it means, see 
Chapter 8.)

One way to answer this question is to work with the standard normal distribution 
and find the z-score that cuts off 47.5 percent on the right side and 47.5 percent 
on the left side. (Yes, Chapter 8 again.) The one on the right is a positive z-score, 
and the one on the left is a negative z-score. Then multiply each z-score by the 
standard error. Add each result to the sample mean to get the upper confidence 
limit and the lower confidence limit.

It turns out that the z-score is 1.96 for the boundary on the right side of the stan-
dard normal distribution, and –1.96 for the boundary on the left. You can calculate 
those values (difficult), get them from a table of the standard normal distribution 
that you typically find in a statistics textbook (easier), or use the Excel worksheet 
function I describe in the next section to do all the calculations (much easier). The 
point is that the upper bound in the sampling distribution is 63.92 (60 + 1.96sx), 
and the lower bound is 56.08 (60 – 1.96sx). Figure 9-6 shows these bounds on the 
sampling distribution.

This means you can say with 95 percent confidence that the FarBlonJet battery 
lasts, on average, between 56.08 hours and 63.92 hours. Want a narrower range? 
You can either reduce your confidence level (to, say, 90 percent) or test a larger 
sample of batteries.

FIGURE 9-6: 
The 95 percent 

confidence limits 
on the FarBlonJet 

sampling 
distribution.
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CONFIDENCE.NORM
The CONFIDENCE.NORM worksheet function does the lion’s share of the work in 
constructing confidence intervals. You supply the confidence level, the standard 
deviation, and the sample size. CONFIDENCE.NORM returns the result of multiplying 
the appropriate z-score by the standard error of the mean. To determine the upper 
bound of the confidence limit, you add that result to the sample mean. To deter-
mine the lower bound, you subtract that result from the sample mean.

To show you how it works, I walk you through the FarBlonJet batteries example 
again. Here are the steps:

1. Select a cell.

2. From the Statistical Functions menu, select CONFIDENCE.NORM to open 
the Function Arguments dialog box for CONFIDENCE.NORM. (See Figure 9-7.)

3. In the Function Arguments dialog box, enter the appropriate arguments.

The Alpha box holds the result of subtracting the desired confidence level from 
1.00.

Yes, that’s a little confusing. Rather than type .95 for the 95 percent confidence 
limit, I have to type .05. Think of it as the percentage of area beyond the 
confidence limits rather than the area within the confidence limits. And why is it 
labeled Alpha? I get into that in Chapter 10.

The standard deviation, remember, is 20.

The Size box holds the number of individuals in the sample. The example 
specifies 100 batteries tested. After I type that number, the answer (3.919928) 
appears in the dialog box.

4. Click OK to put the answer into your selected cell.

FIGURE 9-7: 
The Function  

Arguments  
dialog box for  
CONFIDENCE. 

NORM.
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To finish things off, I add the answer to the sample mean (60) to determine the 
upper confidence limit (63.92) and subtract the answer from the mean to deter-
mine the lower confidence limit (56.08).

Fit to a t
The central limit theorem specifies (approximately) a normal distribution for 
large samples. Many times, however, you don’t have the luxury of large sample 
sizes, and the normal distribution isn’t appropriate. What do you do?

For small samples, the sampling distribution of the mean is a member of a family 
of distributions called the t-distribution. The parameter that distinguishes mem-
bers of this family from one another is called degrees of freedom.

Think of degrees of freedom as the denominator of your variance estimate. For 
example, if your sample consists of 25 individuals, the sample variance that esti-
mates population variance is

s
x x

N
x x x x2

2 2 2

1 25 1 24

The number in the denominator is 24, and that’s the value of the degrees of free-
dom parameter. In general, degrees of freedom (df) = N – 1 (N is the sample size) 
when you use the t-distribution the way I’m about to in this section.

Figure 9-8 shows two members of the t-distribution family (df = 3 and df = 10), 
along with the normal distribution for comparison. As the figure shows, the 
greater the df, the more closely t approximates a normal distribution.

So, to determine the 95 percent confidence level if you have a small sample, work 
with the member of the t-distribution family that has the appropriate df. Find the 
value that cuts off 47.5 percent of the area on the right side of the distribution and 
47.5 percent of the area on the left side of the distribution. The one on the right is 
a positive value, and the one on the left is negative. Then multiply each value by 
the standard error. Add each result to the mean to get the upper confidence limit 
and the lower confidence limit.

In the FarBlonJet batteries example, suppose the sample consists of 25 batteries, 
with a mean of 60 and a standard deviation of 20. The estimate for the standard 
error of the mean is

s s
Nx

20
25

20
5 4
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The df = N – 1 = 24. The value that cuts off 47.5 percent of the area on the right of 
this distribution is 2.064, and on the left it’s –2.064. As I mention earlier, you can 
calculate these values (difficult), look them up in a table that’s in statistics text-
books (easier), or use the Excel function I describe in the next section (much 
easier).

The point is that the upper confidence limit is 68.256 (60 + 2.064sx) and the lower 
confidence limit is 51.744 (60 – 2.064sx). With a sample of 25 batteries, you can 
say with 95 percent confidence that the average life of a FarBlonJet battery is 
between 51.744 hours and 68.256 hours. Notice that with a smaller sample, the 
range is wider for the same level of confidence that I use in the preceding example.

CONFIDENCE.T
Excel’s CONFIDENCE.T worksheet function works just like CONFIDENCE.NORM, 
except that it works with the t-distribution rather than the normal distribution. 
Use it when your data doesn’t satisfy the requirements for normal distribution. Its 
Function Arguments dialog box looks exactly like the dialog box for CONFIDENCE.
NORM and you follow the exact same steps.

For the second FarBlonJet example (mean = 60, standard deviation = 20, and 
sample size = 25), CONFIDENCE.T returns 8.256. I add this value to 60 to calcu-
late  the upper confidence limit (68.256), and subtract this value from 60 to 
calculate the lower confidence limit (51.744).

FIGURE 9-8: 
Some  

members of the  
t-distribution 

family.
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Chapter 10
One-Sample Hypothesis 
Testing

Whatever your occupation, you often have to assess whether something 
out of the ordinary has happened. Sometimes you start with a sample 
from a population about whose parameters you know a great deal. You 

have to decide whether that sample is like the rest of the population or whether 
it’s different.

Measure that sample and calculate its statistics. Finally, compare those statistics 
with the population parameters. Are they the same? Are they different? Does the 
sample represent something that’s off the beaten path? Proper use of statistics 
helps you decide.

Sometimes you don’t know the parameters of the population you’re dealing with. 
Then what? In this chapter, I discuss statistical techniques and worksheet func-
tions for dealing with both cases.

IN THIS CHAPTER

 » Introducing hypothesis tests

 » Testing hypotheses about means

 » Testing hypotheses about variances

 » Visualizing distributions
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Hypotheses, Tests, and Errors
A hypothesis is a guess about the way the world works. It’s a tentative explanation 
of some process, whether that process is natural or artificial. Before studying and 
measuring the individuals in a sample, a researcher formulates hypotheses that 
predict what the data should look like.

Generally, one hypothesis predicts that the data won’t show anything new or 
interesting. Dubbed the null hypothesis (abbreviated H0), this hypothesis holds that 
if the data deviate from the norm in any way, that deviation is due strictly to 
chance. Another hypothesis, the alternative hypothesis (abbreviated H1), explains 
things differently. According to the alternative hypothesis, the data show some-
thing important.

After gathering the data, it’s up to the researcher to make a decision. The way the 
logic works, the decision centers around the null hypothesis. The researcher must 
decide to either reject the null hypothesis or to not reject the null hypothesis. 
Hypothesis testing is the process of formulating hypotheses, gathering data, and 
deciding whether to reject or not reject the null hypothesis.

Nothing in the logic involves accepting either hypothesis. Nor does the logic entail 
any decisions about the alternative hypothesis. It’s all about rejecting or not 
rejecting H0.

Regardless of the reject-don’t-reject decision, an error is possible. One type of 
error occurs when you believe that the data show something important and you 
reject H0, and in reality, the data are due just to chance. This is called a Type I error. 
At the outset of a study, you set the criteria for rejecting H0. In so doing, you set 
the probability of a Type I error. This probability is called alpha (α).

The other type of error occurs when you don’t reject H0 and the data are really due 
to something out of the ordinary. For one reason or another, you happened to miss 
it. This is called a Type II error. Its probability is called beta (β). Table  10-1 
summarizes the possible decisions and errors.

Note that you never know the true state of the world. All you can ever do is mea-
sure the individuals in a sample, calculate the statistics, and make a decision 
about H0.
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Hypothesis Tests and Sampling 
Distributions

In Chapter 9, I discuss sampling distributions. A sampling distribution, remember, 
is the set of all possible values of a statistic for a given sample size. Also in Chap-
ter 9, I discuss the Central Limit Theorem. This theorem tells you that the sampling 
distribution of the mean approximates a normal distribution if the sample size is 
large (for practical purposes, at least 30). This holds whether or not the popula-
tion is normally distributed. If the population is a normal distribution, the sam-
pling distribution is normal for any sample size.

Keep in mind these two additional points from the Central Limit Theorem:

 » The mean of the sampling distribution of the mean is equal to the popu-
lation mean.

The equation for this is

x

 » The standard error of the mean (the standard deviation of the sampling 
distribution) is equal to the population standard deviation divided by the 
square root of the sample size.

This equation is

x N

The sampling distribution of the mean figures prominently into the type of 
hypothesis testing I discuss in this chapter. Theoretically, when you test a null 
hypothesis versus an alternative hypothesis, each hypothesis corresponds to a 
separate sampling distribution.

TABLE 10-1	 Decisions and Errors in Hypothesis Testing
“True State” of the World

H0 Is True H1 Is True

Reject H0 Type I Error Correct Decision

Decision

Do Not Reject H0 Correct Decision Type II Error
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Figure  10-1 shows what I mean. The figure shows two normal distributions. I 
placed them arbitrarily. Each normal distribution represents a sampling distribu-
tion of the mean. The one on the left represents the distribution of possible sam-
ple means if the null hypothesis is truly how the world works. The one on the right 
represents the distribution of possible sample means if the alternative hypothesis 
is truly how the world works.

Of course, when you do a hypothesis test, you never know which distribution pro-
duces the results. You work with a sample mean — a point on the horizontal axis. 
It’s your job to decide which distribution the sample mean comes from. You set up 
a critical value — a decision criterion. If the sample mean is on one side of the criti-
cal value, you reject H0. If not, you don’t.

In this vein, the figure also shows α and β. These, as I mention earlier, are the 
probabilities of decision errors. The area that corresponds to α is in the H0 distri-
bution. I shaded it in dark gray. It represents the probability that a sample mean 
comes from the H0 distribution, but it’s so extreme that you reject H0.

FIGURE 10-1: 
H0 and H1 each 

correspond to a 
sampling 

distribution.
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Where you set the critical value determines α. In most hypothesis testing, you set 
α at .05. This means you’re willing to tolerate a Type I error (incorrectly rejecting 
H0) 5 percent of the time. Graphically, the critical value cuts off 5 percent of the 
area of the sampling distribution. By the way, if you’re talking about the 5 percent 
of the area that’s in the right tail of the distribution (refer to Figure 10-1), you’re 
talking about the upper 5 percent. If it’s the 5 percent in the left tail you’re 
interested in, that’s the lower 5 percent.

The area that corresponds to β is in the H1 distribution. I shaded it in light gray. 
This area represents the probability that a sample mean comes from the H1 distri-
bution, but it’s close enough to the center of the H0 distribution that you don’t 
reject H0. You don’t get to set β. The size of this area depends on the separation 
between the means of the two distributions, and that’s up to the world we live 
in — it’s not up to you.

These sampling distributions are appropriate when your work corresponds to the 
conditions of the Central Limit Theorem — if you know the population you’re 
working with is a normal distribution or if you have a large sample.

Catching Some Z’s Again
Here’s an example of a hypothesis test that involves a sample from a normally 
distributed population. Because the population is normally distributed, any sam-
ple size results in a normally distributed sampling distribution. Because it’s a 
normal distribution, you use z-scores in the hypothesis test:

z x

N

One more “because”: Because you use the z-score in the hypothesis test, the 
z-score here is called the test statistic.

Suppose you think that people living in a particular ZIP code have higher- 
than-average IQs. You take a sample of 16 people from that ZIP code, give them IQ 
tests, tabulate the results, and calculate the statistics. For the population of IQ 
scores, μ = 100 and σ = 16 (for the Stanford-Binet version).

The hypotheses are

H0: μZIP code ≤ 100

H1: μZIP code > 100
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Assume α = .05. That’s the shaded area in the tail of the H0 distribution in 
Figure 10-1.

Why the ≤ in H0? You use that symbol because you reject H0 only if the sample 
mean is larger than the hypothesized value. Anything else is evidence in favor of 
not rejecting H0.

Suppose the sample mean is 107.75. Can you reject H0?

The test involves turning 107.75 into a standard score in the sampling distribution 
of the mean:

z x

N

107 75 100
16

16

7 75
16

4

7 75
4

1 94. . . .

Is the value of the test statistic large enough to enable you to reject H0 with α = .05? 
It is. The critical value — the value of z that cuts off 5 percent of the area in a 
standard normal distribution — is 1.645. (After years of working with the stan-
dard normal distribution, I happen to know this. Read Chapter 8, find out about 
Excel’s NORM.S.INV function, and you can have information like that at your fin-
gertips, too.) The calculated value, 1.94, exceeds 1.645, so it’s in the rejection 
region. The decision is to reject H0.

This means that if H0 is true, the probability of getting a test statistic value that’s 
at least this large is less than .05. That’s strong evidence in favor of rejecting H0. 
In statistical parlance, anytime you reject H0, the result is said to be “statistically 
significant.”

This type of hypothesis testing is called one-tailed because the rejection region is 
in one tail of the sampling distribution.

A hypothesis test can be one-tailed in the other direction. Suppose you have rea-
son to believe that people in that ZIP code had lower-than-average IQs. In that 
case, the hypotheses are

H0: μZIP code ≥ 100

H1: μZIP code < 100

For this hypothesis test, the critical value of the test statistic is –1.645 if α = .05.
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A hypothesis test can be two-tailed, meaning that the rejection region is in both 
tails of the H0 sampling distribution. That happens when the hypotheses look like 
this:

H0: μZIP code = 100

H1: μZIP code ≠ 100

In this case, the alternative hypothesis just specifies that the mean is different 
from the null-hypothesis value, without saying whether it’s greater or whether it’s 
less. Figure 10-2 shows what the two-tailed rejection region looks like for α = .05. 
The 5 percent is divided evenly between the left tail (also called the lower tail) and 
the right tail (the upper tail).

For a standard normal distribution, incidentally, the z-score that cuts off  
2.5 percent in the right tail is 1.96. The z-score that cuts off 2.5 percent in the left 
tail is –1.96. (Again, I happen to know these values after years of working with the 
standard normal distribution.) The z-score in the preceding example, 1.94, does 
not exceed 1.96. The decision, in the two-tailed case, is to not reject H0.

FIGURE 10-2: 
The two-tailed 

rejection region 
for α = .05.
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This brings up an important point: A one-tailed hypothesis test can reject H0, 
while a two-tailed test on the same data might not. A two-tailed test indicates 
that you’re looking for a difference between the sample mean and the null-
hypothesis mean, but you don’t know in which direction. A one-tailed test shows 
that you have a pretty good idea of how the difference should come out. For prac-
tical purposes, this means you should try to have enough knowledge to be able to 
specify a one-tailed test.

Z.TEST
Excel’s Z.TEST worksheet function does the calculations for hypothesis tests 
involving z-scores in a standard normal distribution. You provide sample data, a 
null-hypothesis value, and a population standard deviation. Z.TEST returns the 
probability in one tail of the H0 sampling distribution.

This is a bit different from the way things work when you apply the formula I just 
showed you. The formula calculates a z-score. Then it’s up to you to see where 
that score stands in a standard normal distribution with respect to probability. 
Z.TEST eliminates the middleman (the need to calculate the z-score) and goes 
right to the probability.

Figure 10-3 shows the data and the Function Arguments dialog box for Z.TEST. 
The data are IQ scores for 16 people in the ZIP code example in the preceding sec-
tion. That example, remember, tests the hypothesis that people in a particular ZIP 
code have a higher-than-average IQ.

FIGURE 10-3: 
The Data and 
the Function 

Arguments dialog 
box for Z.TEST.
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Here are the steps for using Z.TEST:

1. Enter your data into an array of cells and select a cell for the result.

The data in this example are in cells C3 through C18. I selected D3 for the 
result.

2. From the Statistical Functions menu, select Z.TEST to open the Function 
Arguments dialog box for Z.TEST. (Refer to Figure 10-3.)

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

For this example, the Array is C3:C18. In the X box, I type the mean. That’s 100, 
the mean of IQ scores in the population. In the Sigma box, I type 16, the 
population standard deviation of IQ scores. The answer (0.026342) appears in 
the dialog box.

4. Click OK to put the answer into the selected cell.

With α = .05 and a one-tailed test (H1: μ > 100), the decision is to reject H0, because 
the answer (0.026) is less than .05. Note that with a two-tailed test (H1: μ ≠ 100), 
the decision is to not reject H0. That’s because 2 × 0.026 is greater than .05 — just 
barely greater (.052) — but if you draw the line at .05, you cannot reject H0.

t for One
In the preceding example, I work with IQ scores. The population of IQ scores is a 
normal distribution with a well-known mean and standard deviation. This enables 
me to work with the central limit theorem and describe the sampling distribution 
of the mean as a normal distribution. I then am able to use z as the test statistic.

In the real world, however, you typically don’t have the luxury of working with 
such well-defined populations. You usually have small samples, and you’re typi-
cally measuring something that isn’t as well-known as IQ. The bottom line is that 
you often don’t know the population parameters, nor do you know whether the 
population is normally distributed.

When that’s the case, you use the sample data to estimate the population standard 
deviation, and you treat the sampling distribution of the mean as a member of a 
family of distributions called the t-distribution. You use t as a test statistic. In 
Chapter 9, I introduce this distribution, and mention that you distinguish mem-
bers of this family by a parameter called degrees of freedom (df).
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The formula for the test statistic is

t x
s

N

Think of df as the denominator of the estimate of the population variance. For the 
hypothesis tests in this section, that’s N-1, where N is the number of scores in 
the sample. The higher the df, the more closely the t-distribution resembles the 
normal distribution.

Here’s an example: FarKlempt Robotics, Inc., markets microrobots. The company 
claims that its product averages four defects per unit. A consumer group believes 
that this average is higher. The consumer group takes a sample of nine FarKlempt 
microrobots and finds an average of seven defects, with a standard deviation of 
3.16. The hypothesis test is

H0: μ ≤ 4

H1: μ > 4

α = .05

The formula is

t x
s

N

7 4
3 16

9

3
3 16

3

2 85
. .

.

Can you reject H0? The Excel function in the next section tells you.

T.DIST, T.DIST.RT, and T.DIST.2T
The T.DIST family of worksheet functions indicates whether your calculated t 
value is in the region of rejection. With T.DIST, you supply a value for t, a value for 
df, and a value for an argument called Cumulative. T.DIST returns the probability 
of obtaining a t value at least as high as yours if H0 is true. If that probability is less 
than your α, you reject H0.

Follow these steps:

1. Select a cell to store the result.

2. From the Statistical Functions menu, select T.DIST to open the Function 
Arguments dialog box for T.DIST. (See Figure 10-4.)
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3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

The calculated t value goes in the X box. For this example, the calculated t value 
is 2.85.

Enter the degrees of freedom in the Deg_freedom box. For this example, that 
value is 8 (9 scores – 1). (Again, for more on degrees of freedom, see 
Chapter 9.)

The Cumulative box takes either TRUE or FALSE. I type TRUE in this box to give 
the probability of getting a value of X or less in the t-distribution with the 
indicated degrees of freedom. Excel refers to this as the left-tailed distribution. 
Entering FALSE gives the height of the t-distribution at X. I use this option later 
in this chapter, when I create a chart of a t-distribution. (Otherwise, I don’t 
know why you would ever type FALSE into this box.)

After I type TRUE, the answer (.98926047) appears in the dialog box.

4. Click OK to close the dialog box and put the answer in the selected cell.

The value in the dialog box in Figure 10-4 is greater than .95, so the decision is to 
reject H0. Figure 10-5 shows the view in the Mac version. (Remember that Excel 
for the Mac provides the Formula Builder pane rather than the Function Argu-
ments dialog box.)

You might find T.DIST.RT to be a bit more straightforward, at least for this exam-
ple. Its Function Arguments dialog box is just like the one in Figure  10-4, but 
without the Cumulative box. This function returns the probability of getting a 
value of X or greater in the t-distribution. The letters RT in the function name 
stand for right tail. For this example, the function returns .01073953. Because this 
value is less than .05, the decision is to reject H0.

FIGURE 10-4: 
The Function 

Arguments dialog 
box for T.DIST.
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T.DIST.2T gives the two-tailed probability. Its Function Arguments dialog box is 
just like the one for T.DIST.RT. It returns the probability to the right of X in the 
t-distribution plus the probability to the left of –X in the distribution.

T.INV and T.INV.2T
The T.INV family is the flip side of the T.DIST family. Give T.INV a probability and 
degrees of freedom, and it returns the value of t that cuts off that probability to its 
left. To use T.INV, follow these steps:

1. Select a cell to store the result.

2. From the Statistical Functions menu, select T.INV to open the Function 
Arguments dialog box for T.INV. (See Figure 10-6.)

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

I typed .05 into the Probability box and 8 into the Deg_freedom box. The 
answer (–1.859548038) appears in the dialog box.

4. Click OK to close the dialog box and put the answer in the selected cell.

FIGURE 10-5: 
The Formula 

Builder pane for 
T.DIST. on 

the Mac.
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Figure 10-7 shows what it looks like when you work with T.INV on the iPad. iPad 
Excel doesn’t use dialog boxes, so to enter an argument’s value, iPad users tap the 
argument in the Formula bar and then type the value or select a cell that contains 
the value.

T.INV.2T has an identical Function Arguments dialog box. Given Probability and 
Deg_freedom, this function cuts the probability in half. It returns the value of t in 
the right tail that cuts off half the probability. What about the other half? That 
would be the same numerical value multiplied by –1. That negative value of t cuts 
off the other half of the probability in the left tail of the distribution.

Visualizing a t-Distribution
As I mention in Chapter 8, visualizing a distribution often helps you understand 
it. It’s easy and it’s instructive. Figure 10-8 shows how to do it for a t-distribution. 
The function you use is T.DIST, with the FALSE option in the Cumulative box.

FIGURE 10-6: 
The T.INV 
Function 

Arguments 
dialog box.

FIGURE 10-7: 
Working with 
T.INV on the 

iPad.
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Here are the steps to follow:

1. Put the degrees of freedom in a cell.

For this example, I put 15 into cell C2. Feel free to use a different value if you 
like.

2. Create a column of values for the statistic. Include a heading.

In cell D1, I enter t as the heading. In cells D2 through D42, I put the values –4 
to 4 in increments of .2.

3. Add an appropriate heading to the adjoining column. In the first cell 
below the heading of the adjoining column, put the value of the probabil-
ity density for the first value of the statistic.

I enter f(t) as the heading in cell E1. Because I’m graphing a t-distribution, I use 
T.DIST in cell E2. For the value of X, I click cell D2. For df, I click C2 and press 
the F4 key to anchor this selection (that is, to ensure that the value in C2 is 
used in every calculation in column E). In the Cumulative box, I type FALSE to 
return the height of the distribution for this value of t. Then I click OK.

4. Autofill the column with the values.

5. Create the chart.

Highlight both columns and then select the Scatter with Smooth Lines option in 
the Charts area of the Insert tab.

FIGURE 10-8: 
Visualizing a 

t-distribution.
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6. Modify the chart.

The chart appears with the y-axis down the middle. Click on the x-axis to open 
the Format Axis panel. Under Axis Options, in the Vertical Axis Crosses area, 
click the radio button next to Axis Value and type -5 into the box. (This results 
in a clearer picture of the distribution than using -4.) You can then click inside 
the chart to make the Chart Elements tool (the plus sign) appear and use it to 
add the axis titles (t and f(t)). I also delete the chart title and the gridlines, but 
that’s a matter of personal taste. And I like to stretch out the chart.

7. Manipulate the chart.

To help you get a feel for the distribution, try different values for df and see 
how the changes affect the chart.

Testing a Variance
So far, I mention one-sample hypothesis testing for means. You can also test 
hypotheses about variances.

This topic sometimes comes up in the context of manufacturing. Suppose that 
FarKlempt Robotics, Inc., produces a part that has to be a certain length with a 
very small variability. You can take a sample of parts, measure them, find the 
sample variability, and perform a hypothesis test against the desired variability.

The family of distributions for the test is called chi-square. Its symbol is χ2. I won’t 
go into all the mathematics. I’ll just tell you that, once again, df is the parameter 
that distinguishes one member of the family from another. Figure 10-9 shows two 
members of the chi-square family.

The formula for this test statistic is

2
2

2

1N s

N is the number of scores in the sample, s2 is the sample variance, and σ2 is the 
population variance specified in H0.

With this test, you have to assume that what you’re measuring has a normal 
distribution.
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Suppose that the process for the FarKlempt part has to have at most a standard 
deviation of 1.5 inches for its length. (Notice I use standard deviation, which allows 
me to speak in terms of inches. If I use variance, the units would be square inches.) 
After measuring a sample of 26 parts, you find a standard deviation of 1.8 inches.

The hypotheses are

H0: σ
2 ≤ 2.25 (remember to square the at-most standard deviation of 1.5 inches)

H1: σ
2 > 2.25

α = .05

Working with the formula,

2
2

2

2

2

1 26 1 1 8

1 5

25 3 24
2 25

36
N s .

.

.
.

can you reject H0? Read on.

FIGURE 10-9: 
Two members of 

the chi-square 
family.
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CHISQ.DIST and CHISQ.DIST.RT
After calculating a value for your chi-square test statistic, you use the CHSQ.DIST 
worksheet function to make a judgment about it. You supply the chi-square value 
and the df. Just like in T.DIST, you supply either TRUE or FALSE for Cumulative. If 
you type TRUE, CHISQ.DIST tells you the probability of obtaining a value at most 
that high if H0 is true. (This is the left-tail probability.) If that probability is 
greater than 1–α, reject H0.

To show you how it works, I apply the information from the example in the pre-
ceding section. Follow these steps:

1. Select a cell to store the result.

2. From the Statistical Functions menu, select CHISQ.DIST to open the 
Function Arguments dialog box for CHISQ.DIST. (See Figure 10-10.)

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the X box, I typed the calculated chi-square value. For this example, that 
value is 36.

In the Deg_freedom box, I typed the degrees of freedom. For this example, 
that’s 25 (26 – 1).

FIGURE 10-10: 
The Function 

Arguments 
dialog box for 
CHISQ.DIST.
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In the Cumulative box, I typed TRUE. This returns the left-tailed probability — 
the probability of obtaining at most the value I typed in the X box. If I type 
FALSE, CHISQ.DIST returns the height of the chi-square distribution at X. This is 
helpful if you’re graphing out the chi-square distribution, which I do later in this 
chapter, but otherwise — not so much.

After you type TRUE, the dialog box shows the probability of obtaining at most 
this value of chi-square if H0 is true.

4. Click OK to close the dialog box and put the answer in the selected cell.

The value in the dialog box in Figure 10-10 is greater than 1–.05, so the decision 
is to not reject H0. (Can you conclude that the process is within acceptable limits 
of variability? See the nearby sidebar “A point to ponder.”)

CHISQ.DIST.2T works like CHISQ.DIST, except its Function Arguments dialog box 
has no Cumulative box. Supply a value for chi-square and degrees of freedom and 
it returns the right-tail probability — the probability of obtaining a chi-square at 
least as high as the value you type into X.

CHISQ.INV and CHISQ.INV.RT
The CHISQ.INV family is the flip side of the CHISQ.DIST family. You supply a 
probability and df, and CHISQ.INV tells you the value of chi-square that cuts off 
the probability in the left tail of the chi-square distribution. Follow these steps:

1. Select a cell to store the result.

2. From the Statistical Functions menu, select CHISQ.INV and click OK  
to open the Function Arguments dialog box for CHISQ.INV. (See 
Figure 10-11.)

FIGURE 10-11: 
The Function 

Arguments 
dialog box for 
CHISQ.INV.
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3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Probability box, I typed .05 — the probability I’m interested in for this 
example.

In the Deg_freedom box, I typed 25 — the value for degrees of freedom in this 
example (26 – 1= 25). After I type the df, the dialog box shows the value 
(14.61140764) that cuts off the lower 5 percent of the area in this chi-square 
distribution.

4. Click OK to close the dialog box and put the answer in the selected cell.

The CHISQ.INV.RT Function Arguments dialog box is identical to the CHISQ.INV 
dialog box. The RT version returns the chi-square value that cuts off the right-tail 
probability. This is useful if you want to know the value that you have to exceed in 
order to reject H0. For this example, I typed .05 and 25 as the arguments to this 
function. The returned answer was 37.65248413. The calculated value, 36, didn’t 
miss by much. A miss is still a miss (to paraphrase “As Time Goes By”), and you 
cannot reject H0.

A POINT TO PONDER
Retrace the example in the preceding section. FarKlempt Robotics wants to show that 
its manufacturing process is within acceptable limits of variability. The null hypothesis 
says, in effect, that the process is acceptable. The data do not present evidence for 
rejecting H0. The value of the test statistic just misses the critical value. Does that mean 
the manufacturing process is within acceptable limits? Statistics are an aid to common 
sense, not a substitute. If the data are just barely within acceptability, that should set off 
alarms.

Usually, you try to reject H0. This is a rare case when not rejecting H0 is more desirable, 
because nonrejection implies something positive — the manufacturing process is work-
ing properly. Can you still use hypothesis testing techniques in this situation?

Yes, you can — with a notable change: Rather than choose a small value of α, like .05, 
you choose a large value, like .20. This stacks the deck against not rejecting H0 — small 
values of the test statistic can lead to rejection. If α is .20 in this example, the critical 
value is 30.6752. (Use CHISQ.INV.RT to verify that.) Because the obtained value, 36, is 
higher than this critical value, the decision with this α is to reject H0.

Using a high α is not often done. When the desired outcome is to not reject H0, I strongly 
advise using it.
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Visualizing a Chi-Square Distribution
To help you understand chi-square distributions, I show you how to create a chart 
for one. The function you use is CHISQ.DIST, with the FALSE option in the Cumula-
tive box. Figure 10-12 shows what the numbers and the finished product look like.

Here are the steps:

1. Put the degrees of freedom in a cell.

For this example, I put 8 into cell C2. Feel free to use another value if you like.

2. Create a column of values for the statistic. Include a heading.

In cell D1, I typed the heading χ2. In cells D2 through D50, I put the values 0 to 
24 in increments of .5

FIGURE 10-12: 
Visualizing a 

chi-square 
distribution.
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3. Add an appropriate heading to the adjoining column. In the first cell 
below the heading, put the value of the probability density for the first 
value of the statistic.

In cell E1 I typed the heading f(χ2). Because I’m graphing a chi-square distribu-
tion, I use CHISQ.DIST in cell E2. For the value of X, I clicked cell D2. For df, I 
click C2 and press the F4 key to anchor this selection (and ensure that this 
value is used in all the calculations in column E). In the Cumulative box, I type 
FALSE to return the height of the distribution for this value of χ2. Then I 
click OK.

4. Autofill the column with the values.

5. Create the chart.

Highlight both columns and then select the Scatter with Smooth Lines option in 
the Charts area of the Insert tab.

6. Modify the chart.

I click inside the chart to make the Chart Elements Tool (the plus sign) appear 
and use it to add the axis titles [χ2 and f(χ2)]. I delete the chart title and the 
gridlines, but that’s a matter of personal taste. I also like to stretch out the 
chart.

7. Manipulate the chart.

To help you get a feel for the distribution, try different values for df, and see 
how the changes affect the chart.
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Chapter 11
Two-Sample Hypothesis 
Testing

In business, in education, and in scientific research, the need often arises to 
compare one sample with another. Sometimes the samples are independent, 
and sometimes they’re matched in some way. Each sample comes from a sepa-

rate population. The objective is to decide whether these populations are different 
from one another.

Usually, this process involves tests of hypotheses about population means. You 
can also test hypotheses about population variances. In this chapter, I show you 
how to carry out both kinds of tests. I also discuss useful worksheet functions and 
data analysis tools that help you get the job done.

Hypotheses Built for Two
As in the one-sample case (refer to Chapter  10), hypothesis testing with two  
samples starts with a null hypothesis (H0) and an alternative hypothesis (H1). The 
null hypothesis specifies that any differences you see between the two samples are 
due strictly to chance. The alternative hypothesis says, in effect, that any differ-
ences you see are real and not due to chance.

IN THIS CHAPTER

 » Testing differences between means 
of two samples

 » Testing means of paired samples

 » Testing hypotheses about variances
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It’s possible to have a one-tailed test, in which the alternative hypothesis specifies 
the direction of the difference between the two means, or a two-tailed test, in 
which the alternative hypothesis doesn’t specify the direction of the difference.

For a one-tailed test, the hypotheses look like this:

H0: μ1 - μ2 = 0

H1: μ1 - μ2 > 0

or like this:

H0: μ1 - μ2 = 0

H1: μ1 - μ2 < 0

For a two-tailed test, the hypotheses are

H0: μ1 - μ2 = 0

H1: μ1 - μ2 ≠ 0

The zero in these hypotheses is the typical case. It’s possible, however, to test for 
any value — just substitute that value for zero.

To carry out the test, you first set α, the probability of a Type I error that you’re 
willing to live with (see Chapter 10). Then you calculate the mean and standard 
deviation of each sample, subtract one mean from the other, and use a formula to 
convert the result into a test statistic. Next, compare the test statistic to a sam-
pling distribution of test statistics. If it’s in the rejection region that α specifies 
(see Chapter 10), reject H0. If not, don’t reject H0.

Sampling Distributions Revisited
In Chapter 9, I introduce the idea of a sampling distribution — a distribution of all 
possible values of a statistic for a particular sample size. In that chapter, I describe 
the sampling distribution of the mean. In Chapter 10, I show its connection with 
one-sample hypothesis testing.

For two-sample hypothesis testing, another sampling distribution is necessary. 
This one is the sampling distribution of the difference between means.
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The sampling distribution of the difference between means is this: It’s the distri-
bution of all possible values of differences between pairs of sample means with 
the sample sizes held constant from pair to pair. (Yes, that’s a mouthful.) Held 
constant from pair to pair means that the first sample in the pair always has the 
same size and that the second sample in the pair always has the same size. The 
two sample sizes are not necessarily equal.

Within each pair, each sample comes from a different population. All the samples 
are independent of one another so that picking individuals for one sample has no 
effect on picking individuals for another.

Figure 11-1 shows the steps in creating this sampling distribution. This is some-
thing you never do in practice. It’s all theoretical. As the figure shows, the idea is 
to take a sample from one population and a sample from another, calculate their 
means, and subtract one mean from the other. Return the samples to the popula-
tions and repeat over and over and over. The result of the process is a set of dif-
ferences between means. This set of differences is the sampling distribution.

Applying the Central Limit Theorem
Like any other set of numbers, this sampling distribution has a mean and a stan-
dard deviation. As is the case with the sampling distribution of the mean (see 
Chapters 9 and 10), the central limit theorem applies here.

FIGURE 11-1: 
Creating the 

sampling 
distribution of the 

difference 
between means.
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According to the Central Limit Theorem, if the samples are large enough, the 
sampling distribution of the difference between means is approximately a normal 
distribution. If the populations are normally distributed, the sampling distribu-
tion is a normal distribution even if the samples are small.

The central limit theorem also has something to say about the mean and standard 
deviation of this sampling distribution. Suppose the parameters for the first pop-
ulation are μ1 and σ1 and the parameters for the second population are μ2 and σ2. 
The mean of the sampling distribution is

x x1 2 1 2

The standard deviation of the sampling distribution is

x x N N1 2

1
2

1

2
2

2

N1 is the number of individuals in the sample from the first population, and N2 is 
the number of individuals in the sample from the second.

This standard deviation is called the standard error of the difference between means.

Figure 11-2 shows the sampling distribution along with its parameters, as speci-
fied by the central limit theorem.

FIGURE 11-2: 
The sampling 

distribution of the 
difference 

between means 
according to the 

central limit 
theorem.
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Z’s once more
Because the Central Limit Theorem says that the sampling distribution is approx-
imately normal for large samples (or for small samples from normally distributed 
populations), you use the z-score as your test statistic. Another way to say “Use 
the z-score as your test statistic” is “Perform a z-test.” Here’s the formula:

z
x x

x x

1 2 1 2

1 2

The term (μ1-μ2) represents the difference between the means in H0.

This formula converts the difference between sample means into a standard score. 
Compare the standard score against a standard normal distribution — a normal 
distribution with μ = 0 and σ = 1. If the score is in the rejection region defined by 
α, reject H0. If it’s not, don’t reject H0.

You use this formula when you know the value of σ12 and σ22.

Here’s an example. Imagine a new training technique designed to increase 
IQ. Take a sample of 25 people and train them under the new technique. Take 
another sample of 25 people and give them no special training. Suppose that the 
sample mean for the new technique sample is 107, and for the no-training sample 
it’s 101.2. The hypothesis test is

H0: μ1 - μ2 = 0

H1: μ1 - μ2 > 0

I’ll set α at .05.

The IQ (Stanford Binet version) is known to have a standard deviation of 16, and I 
assume that standard deviation would be the same in the population of people 
trained on the new technique. Of course, that population doesn’t exist. The 
assumption is that if it did, it should have the same value for the standard devia-
tion as the regular population of IQ scores. Does the mean that (theoretical) popu-
lation have the same value as the regular population? H0 says it does. H1 says it’s 
larger.

The test statistic is

z
x x x x

N N
x x

1 2 1 2 1 2 1 2

1
2

1

2
2

2

1 2

107 101.. .
.

.
2

16
25

16
25

5 8
4 53

1 28
2 2
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With α = .05, the critical value of z — the value that cuts off the upper 5 percent of 
the area under the standard normal distribution  — is 1.645. (You can use the 
worksheet function NORM.S.INV from Chapter  8 to verify this.) The calculated 
value of the test statistic is less than the critical value, so the decision is to not 
reject H0. Figure 11-3 summarizes this.

Data analysis tool: z-Test:  
Two Sample for Means
Excel provides a data analysis tool that makes it easy to carry out tests like the one 
in the IQ example. It’s called z-Test: Two Sample for Means. Figure 11-4 shows 
the dialog box for this tool along with sample data that correspond to the IQ 
example. Figure 11-5 shows how it looks on the Mac.

To use this tool, follow these steps:

1. Type the data for each sample into a separate data array.

For this example, the data in the New Technique sample are in column E, and 
the data for the No Training sample are in column G.

FIGURE 11-3: 
The sampling 

distribution of the 
difference 

between means, 
along with the 

critical value  
for α = .05 and 

the obtained 
value of the test 

statistic in the  
IQ example.
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2. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
click to select z-Test: Two Sample for Means.

4. Click OK to open the z-Test: Two Sample for Means dialog box. (Refer to 
Figure 11-4.)

5. In the Variable 1 Range box, enter the cell range that holds the data for 
one of the samples.

For the example, the New Technique data are in $E$2:$E$27. (Note the $ signs 
for absolute referencing.)

6. In the Variable 2 Range box, enter the cell range that holds the data for 
the other sample.

The No Training data are in $G$2:$G$27.

7. In the Hypothesized Mean Difference box, type the difference between μ1 
and μ2 that H0 specifies.

In this example, that difference is 0.

FIGURE 11-4: 
The z-Test data 

analysis tool and 
data from two 

samples.
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8. In the Variable 1 Variance (known) box, type the variance of the first 
sample.

The standard deviation of the population of IQ scores is 16, so this variance  
is 162= 256.

9. In the Variable 2 Variance (known) box, type the variance of the second 
sample.

In this example, the variance is also 256.

10. If the cell ranges include column headings, select the Labels check box.

I included the headings in the ranges, so I selected the box.

11. The Alpha box has 0.05 as a default.

I used the default value, consistent with the value of α in this example.

12. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

13. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with 
the results.

Figure 11-6 shows the tool’s results, after I expanded the columns. Rows 4, 5, and 
7 hold values you input into the dialog box. Row 6 counts the number of scores in 
each sample.

FIGURE 11-5: 
The z-Test data 
analysis tool on 

the Mac.
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The value of the test statistic is in cell B8. The critical value for a one-tailed test is 
in B10, and the critical value for a two-tailed test is in B12.

Cell B9 displays the proportion of area that the test statistic cuts off in one tail of 
the standard normal distribution. Cell B11 doubles that value — it’s the proportion 
of area cut off by the positive value of the test statistic (in the tail on the right side 
of the distribution) plus the proportion cut off by the negative value of the test 
statistic (in the tail on the left side of the distribution).

t for Two
The example in the preceding section involves a situation you rarely encounter — 
known population variances. If you know a population’s variance, you’re likely to 
know the population mean. If you know the mean, you probably don’t have to 
perform hypothesis tests about it.

Not knowing the variances takes the central limit theorem out of play. This means 
that you can’t use the normal distribution as an approximation of the sampling 
distribution of the difference between means. Instead, you use the t-distribution, 
a family of distributions I introduce in Chapter 9 and apply to one-sample hypoth-
esis testing in Chapter 10. The members of this family of distributions differ from 
one another in terms of a parameter called degrees of freedom (df). Think of df as 
the denominator of the variance estimate you use when you calculate a value of t 
as a test statistic. Another way to say “Calculate a value of t as a test statistic” is 
“Perform a t-test.”

Unknown population variances lead to two possibilities for hypothesis testing. 
One possibility is that although the variances are unknown, you have reason to 
assume they’re equal. The other possibility is that you cannot assume they’re 
equal. In the subsections that follow, I discuss these possibilities.

FIGURE 11-6: 
Results of the 

z-Test data 
analysis tool.
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Like peas in a pod: Equal variances
When you don’t know a population variance, you use the sample variance to esti-
mate it. If you have two samples, you average (sort of) the two sample variances 
to arrive at the estimate.

Putting sample variances together to estimate a population variance is called 
pooling. With two sample variances, here’s how you do it:

s
N s N s

N Np
2 1 1

2
2 2

2

1 2

1 1
1 1

In this formula, sp
2 stands for the pooled estimate. Notice that the denominator of 

this estimate is (N1–1) + (N2–1). Is this the df? Absolutely!

The formula for calculating t is

t
x x

s
N Np

1 2 1 2

1 2

1 1

On to an example. FarKlempt Robotics is trying to choose between two machines 
to produce a component for its new microrobot. Speed is of the essence, so the 
company has each machine produce ten copies of the component and they time 
each production run. The hypotheses are

H0: μ1-μ2 = 0

H1: μ1-μ2 ≠ 0

They set α at .05. This is a two-tailed test because they don’t know in advance 
which machine might be faster.

Table 11-1 presents the data for the production times in minutes.

TABLE 11-1	 Sample Statistics from the FarKlempt Machine Study
Machine 1 Machine 2

Mean Production Time 23.00 20.00

Standard Deviation 2.71 2.79

Sample Size 10 10
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The pooled estimate of σ2 is

s
N s N s
N Np

2 1 1

2

2 2

2

1 2

2

1 1

1 1

10 1 2 71 10 1 2. ..

. .

79

10 1 10 1

9 2 71 9 2 79

9 9

66 70

18

2

2 2

77 56.

The estimate of σ is 2.75, the square root of 7.56.

The test statistic is

t
x x

s
N Np

1 2 1 2

1 2

1 1

23 20

2 75 1
10

1
10

3
1 23

2 44
. .

.

For this test statistic, df = 18, the denominator of the variance estimate. In a  
t-distribution with 18 df, the critical value is 2.10 for the right-side (upper) tail 
and –2.10 for the left-side (lower) tail. If you don’t believe me, apply T.INV.2. 
(See Chapter 10.) The calculated value of the test statistic is greater than 2.10, so 
the decision is to reject H0. The data provide evidence that Machine 2 is signifi-
cantly faster than Machine 1. (You can use the word significant whenever you 
reject H0.)

Like p’s and q’s: Unequal variances
The case of unequal variances presents a challenge. As it happens, when variances 
are not equal, the t-distribution with (N1–1) + (N2–1) degrees of freedom is not as 
close an approximation to the sampling distribution as statisticians would like.

Statisticians meet this challenge by reducing the degrees of freedom. To accom-
plish the reduction, they use a fairly involved formula that depends on the sample 
standard deviations and the sample sizes.

Because the variances aren’t equal, a pooled estimate is not appropriate. So, you 
calculate the t-test in a different way:

t
x x

s
N

s
N

1 2 1 2

1
2

1

2
2

2

You evaluate the test statistic against a member of the t-distribution family that 
has the reduced degrees of freedom.
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T.TEST
The worksheet function T.TEST eliminates the muss, fuss, and bother of working 
through the formulas for the t-test.

Figure 11-7 shows the data for the FarKlempt machines example I show you ear-
lier in this chapter. The figure also shows the Function Arguments dialog box for 
T.TEST.

To work with T.TEST, follow these steps:

1. Type the data for each sample into a separate data array and select a cell 
for the result.

For this example, the data for the Machine 1 sample are in column B and the 
data for the Machine 2 sample are in column D.

2. From the Statistical Functions menu, select T.TEST to open the Function 
Arguments dialog box for T.TEST.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Array1 box, enter the sequence of cells that holds the data for one of the 
samples. In this example, the Machine 1 data are in B3:B12.

In the Array2 box, enter the sequence of cells that holds the data for the other 
sample. Here, the Machine 2 data are in D3:D12.

The Tails box indicates whether this is a one-tailed test or a two-tailed test. In 
this example, it’s a two-tailed test, so I typed 2 in this box.

FIGURE 11-7: 
Working with 

T.TEST.
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The Type box holds a number that indicates the type of t-test. The choices are 
1 for a paired test (which you find out about in an upcoming section), 2 for two 
samples assuming equal variances, and 3 for two samples assuming unequal 
variances. I typed 2.

With values supplied for all the arguments, the dialog box shows the probabil-
ity associated with the t value for the data. It does not show the value of t.

4. Click OK to put the answer in the selected cell.

The value in the dialog box in Figure 11-7 (which goes into the selected cell) is less 
than .05, so the decision is to reject H0.

By the way, for this example, typing 3 into the Type box (indicating unequal vari-
ances) results in a slight adjustment in the probability from the equal variance 
test. The adjustment is small because the sample variances are almost equal and 
the sample sizes are the same. Try it and see.

Figure 11-8 shows how you work with T.TEST on the iPad.

Data analysis tool: t-Test: Two Sample
Excel provides data analysis tools that carry out t-tests. One tool works for the 
equal variance cases, and another for the Unequal Variances case. As you’ll see, 
when you use these tools, you end up with more information than T.TEST 
gives you.

Here’s an example that applies the Equal Variances t-test tool to the data from the 
FarKlempt machines example. Figure 11-9 shows the data along with the dialog 
box for t-Test: Two-Sample Assuming Equal Variances.

FIGURE 11-8: 
Working  

with T.TEST  
on the iPad.
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To use this tool, follow these steps:

1. Type the data for each sample into a separate data array.

For this example, the data in the Machine 1 sample are in column B and the 
data for the Machine 2 sample are in column D. I have the data on a worksheet 
named TTEST Data.

2. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select t-Test: Two-Sample Assuming Equal Variances.

4. Click OK to open this tool’s dialog box.

This is the dialog box in Figure 11-7.

5. In the Variable 1 Range box, enter the cell range that holds the data for 
one of the samples.

For the example, the Machine 1 data are in $B$2:$B$12, including the column 
heading. (Note the $ signs for absolute referencing.)

6. In the Variable 2 Range box, enter the cell range that holds the data for 
the other sample.

The Machine 2 data are in $D$2:$D$12, including the column heading.

7. In the Hypothesized Mean Difference box, type the difference between μ1 
and μ2 that H0 specifies.

In this example, that difference is 0.

8. If the cell ranges include column headings, select the Labels check box.

I included the headings in the ranges, so I selected the box.

FIGURE 11-9: 
The Equal 

Variances t-Test 
data analysis tool 

and data from 
two samples.
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9. The Alpha box has 0.05 as a default. Change that value, if you’re so 
inclined.

10. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

11. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with 
the results.

Figure  11-10 shows the tool’s results, after I expanded the columns. Rows 4 
through 7 hold sample statistics. Cell B8 shows the H0-specified difference 
between the population means, and B9 shows the degrees of freedom.

The remaining rows provide t-related information. The calculated value of the 
test statistic is in B10. Cell B11 gives the proportion of area that the positive value 
of the test statistic cuts off in the upper tail of the t-distribution with the indicated 
df. Cell B12 gives the critical value for a one-tailed test: That’s the value that cuts 
off the proportion of the area in the upper tail equal to α.

Cell B13 doubles the proportion in B11. This cell holds the proportion of area from 
B11 added to the proportion of area that the negative value of the test statistic cuts 
off in the lower tail. Cell B14 shows the critical value for a two-tailed test: That’s 
the positive value that cuts off α/2 in the upper tail. The corresponding negative 
value (not shown) cuts off α/2 in the lower tail. The samples in the example have 
the same number of scores and approximately equal variances, so applying the 
Unequal Variances version of the t-Test tool to that data set won’t show much of 
a difference from the equal variances case.

FIGURE 11-10: 
Results of the 

Equal Variances 
t-Test data 

analysis tool.
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To present a crystal clear picture of what happens when you apply the Unequal 
Variances version of the t-test tool, I created the example summarized in Table 11-2.  
The samples in this example have different sizes and widely differing variances.

To clarify the difference between the Equal Variances tool and the Unequal Vari-
ances tool, I ran both on the data and put the results side by side. Figure 11-11 
shows the results from both tools. To run the Unequal Variances tool, you com-
plete the same steps as for the Equal Variances version, with one exception: In the 
Data Analysis Tools dialog box, you select t-Test: Two-Sample Assuming Unequal 
Variances.

Figure  11-11 shows one obvious difference between the two tools: The Unequal 
Variances tool shows no pooled estimate of σ2, because the t-test for that case 
doesn’t use one. Another difference is in the df. As I point out earlier, in the Une-
qual Variances case, you reduce the df based on the sample variances and the 
sample sizes. For the equal variances case, the df in this example is 12, and for 
the Unequal Variances case, it’s 10.

The effects of these differences show up in the remaining statistics. The t values, 
critical values, and probabilities are different.

TABLE 11-2	 Sample Statistics for the Unequal Variances  
t-Test Example

Sample 1 Sample 2

Mean 100.125 67.00

Variance 561.84 102.80

Sample Size 8 6

FIGURE 11-11: 
Results of the 

Equal Variances 
t-Test data 

analysis tool and 
the Unequal 

Variances t-Test 
data analysis tool 

for the data 
summarized in 

Table 11-2.
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A Matched Set: Hypothesis Testing  
for Paired Samples

In the hypothesis tests I describe so far, the samples are independent of one 
another. Choosing an individual for one sample has no bearing on the choice of an 
individual for the other.

Sometimes, the samples are matched. The most obvious case is when the same 
individual provides a score under each of two conditions — as in a before-and- 
after study. Suppose ten people participate in a weight loss program. They weigh 
in before they start the program and weigh again after one month on the program. 
The important data is the set of before-and-after differences. Table 11-3 shows 
the data.

The idea is to think of these differences as a sample of scores and treat them as 
you would in a one-sample t-test. (See Chapter 10.)

TABLE 11-3	 Data for the Weight Loss Example

Person
Weight Before  
Program

Weight After  
One Month Difference

1 198 194 4

2 201 203 –2

3 210 200 10

4 185 183 2

5 204 200 4

6 156 153 3

7 167 166 1

8 197 197 0

9 220 215 5

10 186 184 2

Mean 2.9

Standard Deviation 3.25
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You carry out a test on these hypotheses:

H0: μd ≤ 0

H1: μd > 0

The d in the subscripts stands for difference. Set α = .05.

The formula for this kind of t-test is

s s
Nd

The df is N–1.

In this formula, d  is the mean of the differences. To find sd , you calculate the 
standard deviation of the differences and divide by the square root of the number 
of pairs:

From Table 11-3,

t d
s

d

d

2 9
3 25

10

2 82.
.

.

With df = 9 (Number of pairs – 1), the critical value for α = .05 is 2.26. (Use T.INV 
to verify.) The calculated value (2.82) exceeds this value, so the decision is to 
reject H0.

If you’re looking at the formula for this test and thinking, “Hmm, this looks just 
like a one-sample t-test, but the one sample consists of the differences between 
pairs,” you’ve pretty much got it.

T.TEST for matched samples
Earlier, I describe the worksheet function T.TEST and show you how to use it with 
independent samples. This time, I use it for the matched samples weight loss 
example. Figure 11-12 shows the Function Arguments dialog box for T.TEST along 
with data from the weight loss example.

Follow these steps:

1. Enter the data for each sample into a separate data array and select  
a cell.

For this example, the data for the Before sample are in column B and the data 
for the After sample are in column C.
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2. From the Statistical Functions menu, select T.TEST to open the Function 
Arguments dialog box for T.TEST.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Array1 box, type the sequence of cells that holds the data for one of the 
samples. In this example, the Before data are in B3:B12.

In the Array2 box, type the sequence of cells that holds the data for the other 
sample. (The After data are in C3:C12.)

The Tails box indicates whether this is a one-tailed test or a two-tailed test. In 
this example, it’s a one-tailed test, so I type 1 in the Tails box.

The Type box holds a number that indicates the type of t-test to perform. The 
choices are 1 for a paired test, 2 for two samples assuming equal variances, 
and 3 for two samples assuming unequal variances. I typed 1.

With values supplied for all arguments, the dialog box shows the probability 
associated with the t value for the data. It does not show the value of t.

4. Click OK to put the answer in the selected cell.

The value in the dialog box in Figure 11-12 is less than .05, so the decision is to 
reject H0.

If I assign the column headers in Figure 11-12 as names for the respective arrays, 
the formula in the Formula bar can be

=T.TEST(Before,After,1,1)

That format might be easier to explain if you had to show the worksheet to some-
one. (If you don’t remember how to define a name for a cell range, refer to 
Chapter 2.)

FIGURE 11-12: 
The Function 

Arguments dialog 
box for T.TEST 

along with 
matched  

sample data.
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Data analysis tool: t-Test: Paired  
Two Sample for Means
Excel provides a data analysis tool that takes care of just about everything for 
matched samples. It’s called t-Test: Paired Two Sample for Means. In this section, 
I use it on the weight loss data.

Figure 11-13 shows the data along with the dialog box for t-Test: Paired Two Sam-
ple for Means.

Follow these steps:

1. Enter the data for each sample into a separate data array.

For this example, the data in the Before sample are in column B and the data 
for the After sample are in column C.

2. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select t-Test: Paired Two Sample for Means.

4. Click OK to open this tool’s dialog box.

This is the dialog box in Figure 11-13.

5. In the Variable 1 Range box, enter the cell range that holds the data for 
one of the samples.

For the example, the Before data are in $B$2:$B$12, including the heading. 
(Note the $ signs for absolute referencing.)

FIGURE 11-13: 
The Paired Two 

Sample t-Test 
data analysis tool 

and data from 
matched 
samples.



CHAPTER 11  Two-Sample Hypothesis Testing      231

6. In the Variable 2 Range box, enter the cell range that holds the data for 
the other sample.

The After data are in $C$2:$C$12, including the heading.

7. In the Hypothesized Mean Difference box, type the difference between 
μ1 and μ2 that H0 specifies.

In this example, that difference is 0.

8. If the cell ranges include column headings, select the Labels check box.

I included the headings in the ranges, so I selected the check box.

9. The Alpha box has 0.05 as a default. Change that value if you want to use 
a different α.

10. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

11. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with 
the results.

Figure  11-14 shows the tool’s results, after I expanded the columns. Rows 4 
through 7 hold sample statistics. The only item that’s new is the number in cell 
B7, the Pearson Correlation Coefficient. This is a number between –1 and +1 that 
indicates the strength of the relationship between the data in the first sample and 
the data in the second.

FIGURE 11-14: 
Results of the 

Paired Two 
Sample t-Test 

data analysis tool.
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If this number is close to 1 (as in the example), high scores in one sample are 
associated with high scores in the other, and low scores in one are associated with 
low scores in the other. If the number is close to –1, high scores in the first sample 
are associated with low scores in the second, and low scores in the first are associ-
ated with high scores in the second.

If the number is close to zero, scores in the first sample are unrelated to scores in 
the second. Because the two samples consist of scores on the same people, you 
expect a high value. (I describe this topic in much greater detail in Chapter 15.)

Cell B8 shows the H0-specified difference between the population means, and B9 
shows the degrees of freedom.

The remaining rows provide t-related information. The calculated value of the 
test statistic is in B10. Cell B11 gives the proportion of area the positive value of the 
test statistic cuts off in the upper tail of the t-distribution with the indicated df. 
Cell B12 gives the critical value for a one-tailed test: That’s the value that cuts off 
the proportion of the area in the upper tail equal to α.

Cell B13 doubles the proportion in B11. This cell holds the proportion of area from 
B11 added to the proportion of area that the negative value of the test statistic cuts 
off in the lower tail. Cell B13 shows the critical value for a two-tailed test: That’s 
the positive value that cuts off α/2 in the upper tail. The corresponding negative 
value (not shown) cuts off α/2 in the lower tail.

t-tests on the iPad with StatPlus
In this iPad-specific example, I work with the data set in Figure 11-7.

1. Type the data for each sample into a separate data array.

For this example, the data in the Machine 1 sample are in column B and the 
data for the Machine 2 sample are in column D. I have the data on a worksheet 
tab called TTEST Data.

2. Choose Insert | Add-ins |StatPlus from the main menu to open the 
StatPlus pane.

Figure 11-15 shows the opened pane.

3. In the StatPlus pane, tap the New Analysis button and then select Basic 
from the menu that opens in the StatPlus pane.
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4. From the Basic menu that opens, tap Compare Means [T-Test] to open the 
Compare Means pane’s Variables tab. (See Figure 11-16.)

The Options tab (not shown in Figure 11-16) gives you a choice of t-tests (equal 
variances, unequal variances, Paired two-sample t-test). For this example, leave 
it at the default (equal variances).

5. In the Variables tab, fill in the values for the boxes:

• On the drop-down menu of the Columns For box, select TTEST Data, the 
worksheet tab that holds the data.

• On the Headers drop-down menu, select Name in First Row.

• For the Variable #1 box, tap B2 and drag to select the range B2:B12 on the 
spreadsheet, and then tap the three-cells-and-plus-sign icon to open the 
Variable #1 panel. On that panel, tap the Add button.

• On the spreadsheet, tap D2 and drag to select the range D2:D12 and repeat 
the process for the Variable #2 box.

The Compare Means panel should look like Figure 11-17.

6. Tap the Run button to open a new worksheet with the results.

Figure 11-18 shows the results. It’s a pretty extensive set, isn’t it?

FIGURE 11-15: 
The opened 

StatPlus pane.
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FIGURE 11-16: 
The Compare 

Means pane

FIGURE 11-17: 
The completed 

Compare Means 
panel.
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Go ahead and try out the other options (unequal variances, Paired two-sample 
t-test) for the examples in this chapter.

Testing Two Variances
The two-sample hypothesis testing I describe thus far pertains to means. It’s also 
possible to test hypotheses about variances.

In this section, I extend the one-variance manufacturing example I use in  
Chapter  10. FarKlempt Robotics, Inc., produces a part that has to be a certain 
length with a very small variability. Company leaders are considering two 
machines to produce this part, and they want to choose the one that results in the 
least variability. The team from FarKlempt Robotics takes a sample of parts from 
each machine, measures them, finds the variance for each sample, and performs 
a hypothesis test to see whether one machine’s variance is significantly greater 
than the other’s.

FIGURE 11-18: 
StatPlus results 

for the t-test.
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The hypotheses are

H0: σ1
2 = σ2

2

H1: σ1
2 ≠ σ2

2

As always, an α is a must. As usual, I set it to .05.

When you test two variances, you don’t subtract one from the other. Instead, you 
divide one by the other to calculate the test statistic. Sir Ronald Fisher was a 
famous statistician who worked out the mathematics and the family of distribu-
tions for working with variances in this way. The test statistic is named in his 
honor. It’s called an F-ratio, and the test is the F test. The family of distributions 
for the test is called the F-distribution.

Without going into all the mathematics, I’ll just tell you that, once again, df is the 
parameter that distinguishes one member of the family from another. What’s dif-
ferent about this family is that two variance estimates are involved, so each mem-
ber of the family is associated with two values of df — rather than one, as in the 
t-test. Another difference between the F-distribution and the others you’ve seen 
is that the F cannot have a negative value. Figure 11-19 shows two members of the 
F-distribution family.

FIGURE 11-19: 
Two members of 
the F-distribution 

family.
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The test statistic is

F s
s

larger 
smaller 

2

2

Suppose FarKlempt Robotics produces 10 parts with Machine 1 and finds a sample 
variance of .60 square inches. It produces 15 parts with Machine 2 and finds a 
sample variance of .44 square inches. Can the company reject H0?

To answer that question, calculate the test statistic

F .
.

.60
44

1 36

The df’s are 9 and 14: The variance estimate in the numerator of the F-ratio is 
based on 10 cases, and the variance estimate in the denominator is based on 15 
cases.

When the df’s are 9 and 14 and it’s a two-tailed test at α = .05, the critical value of 
F is 3.21. (In a moment, I show you an Excel function that finds the value for you.) 
The calculated value (1.36) is less than the critical value, so the decision is to not 
reject H0.

It makes a difference which df is in the numerator and which df is in the denomi-
nator. The F-distribution for df = 9 and df = 14 is different from the F-distribution 
for df = 14 and df = 9. For example, the critical value in the latter case is 3.98,  
not 3.21.

Using F in conjunction with t
One use of the F-distribution is in conjunction with the t-test for independent 
samples. Before you do the t-test, you use F to help decide whether to assume 
equal variances or unequal variances in the samples.

In the Equal Variances t-test example I show you earlier, the standard deviations 
are 2.71 and 2.79. The variances are 7.34 and 7.78. The F-ratio of these variances is

F 7 78
7 34

1 06.
.

.

Each sample is based on ten observations, so df = 9 for each sample variance. An 
F-ratio of 1.06 cuts off the upper 47 percent of the F-distribution whose df are 9 
and 9. The low F-ratio strongly suggests the variances are equal, so it’s safe to use 
the Equal Variances version of the t-test for these data.
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In the sidebar at the end of Chapter 10, I mention that on rare occasions a high α 
is a good thing. When H0 is a desirable outcome and you’d rather not reject it, you 
stack the deck in favor of rejecting by setting α at a high level so that even small 
differences cause you to reject H0.

This is one of those rare occasions. It’s more desirable to use the Equal Variances 
t-test, which typically provides more degrees of freedom than the Unequal Vari-
ances t-test. Setting a high value of α (.20 is a good one) for the F-test enables you 
to be confident when you assume equal variances.

F.TEST
The worksheet function F.TEST calculates an F-ratio on the data from two sam-
ples. It doesn’t return the F-ratio. Instead, it provides the two-tailed probability 
of the calculated F-ratio under H0. This means that the answer is the proportion 
of area to the right of the F-ratio, and to the left of the reciprocal of the F-ratio  
(1 divided by the F-ratio).

Figure 11-20 presents the data for the FarKlempt machines example I summarize 
for you at the beginning of this section. The figure also shows the Function Argu-
ments dialog box for F.TEST.

Follow these steps to use F.TEST:

1. Enter the data for each sample into a separate data array and select a 
cell for the answer.

For this example, the data for the Machine 1 sample are in column B and the 
data for the Machine 2 sample are in column D.

FIGURE 11-20: 
Working with 

F.TEST.
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2. From the Statistical Functions menu, select F.TEST to open the Function 
Arguments dialog box for F.TEST.

3. In the Function Arguments dialog box, enter the appropriate values 
for the arguments.

In the Array1 box, enter the sequence of cells that holds the data for  
the sample with the larger variance. In this example, that would be the 
Machine 1 data in B3:B12.

In the Array2 box, enter the sequence of cells that holds the data for the other 
sample. Again, in this example, that would be the Machine 2 data in D3:D17.

With values entered for all the arguments, the answer appears in the  
dialog box.

4. Click OK to put the answer in the selected cell.

The value in the dialog box in Figure 11-20 is greater than .05, so the decision is  
to not reject H0. Figure 11-21 shows the area that the answer represents.

Had I assigned names to those two arrays, the formula on the Formula bar could 
have been

=F.TEST(Machine_1,Machine_2)

FIGURE 11-21: 
F.TEST’s results.
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If you don’t know how to assign names to arrays, see Chapter 2. In that chapter, 
you also find out why I inserted an underscore into each name.

F.DIST and F.DIST.RT
You use the worksheet function F.DIST or the function F.DIST.RT to decide 
whether your calculated F-ratio is in the region of rejection. For F.DIST, you sup-
ply a value for F, a value for each df, and a value (TRUE or FALSE) for an argument 
called Cumulative. If the value for Cumulative is TRUE, F.DIST returns the proba-
bility of obtaining an F-ratio of, at most, as high as yours if H0 is true. (Excel calls 
this the left-tail probability.) If that probability is greater than 1–α, you reject H0. 
If the value for Cumulative is FALSE, F.DIST returns the height of the  F-distribution 
at your value of F. I use this option later in this chapter to create a chart of the 
F-distribution.

F.DIST.RT returns the probability of obtaining an F-ratio at least as high as yours 
if H0 is true. (Excel calls this the right-tail probability.) If that value is less than α, 
reject H0. In practice, F.DIST.RT is more straightforward.

Here, I apply F.DIST.RT to the FarKlempt Robotics machine example. The F-ratio 
is 1.36, with 9 and 14 df.

Follow these steps:

1. Select a cell for the answer.

2. From the Statistical Functions menu, select F.DIST.RT to open the 
Function Arguments dialog box for F.DIST.RT. (See Figure 11-22.)

FIGURE 11-22: 
The Function 

Arguments  
dialog box for 
F.DIST.RT.
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3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the X box, type the calculated F. For this example, the calculated F is 1.36.

In the Deg_freedom1 box, type the degrees of freedom for the variance 
estimate in the numerator of the F. The degrees of freedom for the numerator 
in this example is 9 (10 scores – 1).

In the Deg_freedom2 box, I type the degrees of freedom for the variance 
estimate in the denominator of the F.

The degrees of freedom for the denominator in this example is 14  
(15 scores – 1).

With values entered for all the arguments, the answer appears in the  
dialog box.

4. Click OK to close the dialog box and put the answer in the selected cell.

The value in the dialog box in Figure 11-22 is greater than .05, so the decision is to 
not reject H0.

F.INV and F.INV.RT
The F.INV worksheet functions are the reverse of the F.DIST functions. F.INV 
finds the value in the F-distribution that cuts off a given proportion of the area in 
the lower (left) tail. F.INV.RT finds the value that cuts off a given proportion of the 
area in the upper (right) tail. You can use F.INV.RT to find the critical value of F.

Here, I use F.INV.RT to find the critical value for the two-tailed test in the Far-
Klempt machines example:

1. Select a cell for the answer.

2. From the Statistical Functions menu, select F.INV.RT to open the Function 
Arguments dialog box for FINV.RT.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Probability box, enter the proportion of area in the upper tail. In this 
example, that’s .025 because it’s a two-tailed test with α = .05.

In the Deg_freedom1 box, type the degrees of freedom for the numerator.  
For this example, df for the numerator = 9.
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In the Deg_freedom2 box, type the degrees of freedom for the denominator. 
For this example, df for the denominator = 14.

With values entered for all arguments, the answer appears in the dialog box. 
(See Figure 11-23.)

4. Click OK to put the answer into the selected cell.

Data analysis tool: F-test: Two  
Sample for Variances
Excel provides a data analysis tool for carrying out an F-test on two sample vari-
ances. I apply it here to the sample variances example I’ve been using. Figure 11-24 
shows the data, along with the dialog box for F-test: Two-Sample for Variances.

FIGURE 11-24: 
The F-test data 

analysis tool and 
data from two 

samples.

FIGURE 11-23: 
The Function 

Arguments  
dialog box for 

F.INV.RT.
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To use this tool, follow these steps:

1. Enter the data for each sample into a separate data array.

For this example, the data in the Machine 1 sample are in column B and the 
data for the Machine 2 sample are in column D.

2. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select F-Test Two Sample for Variances.

4. Click OK to open this tool’s dialog box.

This is the dialog box shown in Figure 11-24.

5. In the Variable 1 Range box, enter the cell range that holds the data for 
the first sample.

For the example, the Machine 1 data are in $B$2:$B$12, including the heading. 
(Note the $signs for absolute referencing.)

6. In the Variable 2 Range box, enter the cell range that holds the data for 
the second sample.

The Machine 2 data are in $D$2:$D$17, including the heading.

7. If the cell ranges include column headings, select the Labels check box.

I included the headings in the ranges, so I selected the box.

8. The Alpha box has 0.05 as a default. Change that value as needed for a 
different α.

The Alpha box provides a one-tailed α. I want a two-tailed test, so I changed 
this value to .025.

9. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

10. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with 
the results.

Figure  11-25 shows the tool’s results, after I expanded the columns. Rows 4 
through 6 hold sample statistics. Cell B7 shows the degrees of freedom.
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The remaining rows present F-related information. The calculated value of F is in 
B8. Cell B9 gives the proportion of area the calculated F cuts off in the upper tail 
of the F-distribution. This is the right-side area shown earlier in Figure 11-21. Cell 
B10 gives the critical value for a one-tailed test: That’s the value that cuts off the 
proportion of the area in the upper tail equal to the value in the Alpha box.

Visualizing the F-Distribution
The F-distribution is extremely important in statistics, as you’ll see in Chapter 12. 
To increase your understanding of this distribution, I show you how to graph it. 
Figure 11-26 shows the numbers and the finished product.

FIGURE 11-26: 
Visualizing the 
F-distribution.

FIGURE 11-25: 
Results of using 

the F-test data 
analysis tool.
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Follow these steps:

1. Put the degrees of freedom in cells.

I type 10 into cell B1, and 15 into cell B2.

2. Create a column of values for the statistic.

In cells D2 through D42, I type the values 0 through 8 in increments of .2.

3. In the first cell of the adjoining column, put the value of the probability 
density for the first value of the statistic.

Because I’m graphing an F-distribution, I use F.DIST in cell E2. For the value of X, 
I click cell D2. For df1, I click B1 and press the F4 key to anchor this selection. 
For df2, I click B2 and press the F4 key. In the Cumulative box, I type FALSE to 
return the height of the distribution for this value of t. Then I click OK.

4. Autofill the column with the values.

5. Create the chart.

Highlight both columns. Select the Scatter with Smooth Lines option in the 
Charts area of the Insert tab.

6. Modify the chart.

I click inside the chart to open the Chart Elements tool (the plus sign) and use it 
to add the axis titles F and f(F). I also delete the chart title and the gridlines, but 
that’s a matter of personal taste. And I like to stretch out the chart.

7. Manipulate the chart.

To help you get a feel for the distribution, try different values for the df and see 
how the changes affect the chart.
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Chapter 12
Testing More Than 
Two Samples

Statistics would be limited if you could only make inferences about one or two 
samples. In this chapter, I discuss the procedures for testing hypotheses 
about three or more samples. I show what to do when samples are indepen-

dent of one another and what to do when they’re not. In both cases, I discuss what 
to do after you test the hypotheses.

I also introduce Excel data analysis tools that do the work for you. Although these 
tools aren’t at the level you’d find in a dedicated statistical package, you can com-
bine them with Excel’s standard features to produce some sophisticated analyses.

Testing More than Two
Imagine this situation: Your company asks you to evaluate three different meth-
ods for training its employees to do a particular job. You randomly assign  
30 employees to one of the three methods. Your plan is to train them, test them, 
tabulate the results, and draw some conclusions. Before you can finish the study, 
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three people leave the company — one from the method 1 group and two from the 
method 3 group.

Table 12-1 shows the data.

Do the three methods provide different results, or are they so similar that you 
can’t distinguish among them? To decide, you have to carry out a hypothesis test:

H0: μ1 = μ2 = μ3

H1: Not H0

with α = .05.

A thorny problem
Sounds pretty easy, particularly if you’ve read Chapter 11: Take the mean of the 
scores from method 1, the mean of the scores from method 2, and do a t-test to 
see if they’re different. Follow the same procedure for method 1 versus method 3, 

TABLE 12-1	 Data from Three Training Methods
Method 1 Method 2 Method 3

95 83 68

91 89 75

89 85 79

90 89 74

99 81 75

88 89 81

96 90 73

98 82 77

95 84

80

Mean 93.44 85.20 75.25

Sample variance 16.28 14.18 15.64

Standard deviation 4.03 3.77 3.96
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and for method 2 versus method 3. If at least one of those t-tests shows a signifi-
cant difference, reject H0. Nothing to it, right?

Wrong. If your α is .05 for each t-test, you’re setting yourself up for a Type I error 
with a probability higher than planned. The probability that at least one of the 
three t-tests results in a significant difference is way above .05. In fact, it’s .14, 
which is way beyond acceptable. (The mathematics behind calculating that num-
ber is a little involved, so I won’t elaborate.)

With more than three samples, the situation grows even worse. Four groups 
require six t-tests, and the probability that at least one of them is significant  
is .26. Table 12-2 shows what happens with increasing numbers of samples.

Carrying out multiple t-tests is clearly not the answer. What do you do?

A solution
You have to take a different approach. The idea is to think in terms of variances 
rather than means.

I’d like you to think of variance in a slightly different way. The formula for esti-
mating population variance, remember, is

s
x x

N
2

2

1

TABLE 12-2	 The Incredible Increasing α
Number of Samples Number of t-Tests Pr (At Least One Significant t)

3 3 .14

4 6 .26

5 10 .40

6 15 .54

7 21 .66

8 28 .76

9 36 .84

10 45 .90
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Because the variance is almost a mean of squared deviations from the mean, stat-
isticians also refer to it as mean square. In a way, that’s an unfortunate nickname: 
It leaves out “deviation from the mean,” but there you have it.

The numerator of the variance — excuse me, mean square — is the sum of squared 
deviations from the mean. This leads to another nickname, sum of squares. The 
denominator, as I say in Chapter 10, is degrees of freedom (df). So, the slightly dif-
ferent way to think of variance is

Mean Square = Sum of Squares
df

You can abbreviate this as

MS = SS
df

Now, on to solving the thorny problem. One important step is to find the mean 
squares hiding in the data. Another is to understand that you use these mean 
squares to estimate the variances of the populations that produced these samples. 
In this case, assume those variances are equal, so, in reality, you’re estimating a 
single variance. The final step is to understand that you use these estimates to test 
the hypotheses I show you at the beginning of this chapter.

Three different mean squares are inside the data in Table 12-1. Start with the whole 
set of 27 scores, forgetting for the moment that they’re divided into three groups. 
Suppose you want to use those 27 scores to calculate an estimate of the population 
variance. (It’s a dicey idea, but humor me.) The mean of those 27 scores is 85. I call 
that mean the grand mean because it’s the average of everything.

So, the mean square is

95 85 91 85 73 85 77 85
27 1

68 08
2 2 2 2

...
.

The denominator has 26 (27 – 1) degrees of freedom. I refer to that variance as the 
total variance, or in the new way of thinking about this, the MSTotal. It’s often 
abbreviated as MST.

Here’s another variance to consider. In Chapter 11, I describe the t-test for two 
samples with equal variances. For that test, you put the two sample variances 
together to create a pooled estimate of the population variance. The data in 
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Table 12-1 provide three sample variances for a pooled estimate: 16.28, 14.18, and 
15.64. Assuming these numbers represent equal population variances, the pooled 
estimate is

s
N s N s N s

N N Np
2 1 1

2
2 2

2
3 3

2

1 2 3

1 1 1
1 1 1

9 1 16 28 10 1 14 18 8 1 15 64
9 1 10 1 8 1

. . .
15 31.

Because this pooled estimate comes from the variance within the groups, it’s 
called MSWithin, or MSW.

One more mean square to go — the variance of the sample means around the 
grand mean. In this example, that means the variance in these numbers: 93.44, 
85.20, and 75.25 — sort of. I say “sort of” because these are means, not scores. 
When you deal with means, you have to take into account the number of scores 
that produced each mean. To do that, you multiply each squared deviation by the 
number of scores in that sample.

This variance is

9 93 44 85 10 85 20 85 8 75 25 85
3 1

701 34
2 2 2

. . .
.

The df for this variance is 2 (the number of samples – 1).

Statisticians, not known for their crispness of usage, refer to this as the variance 
between sample means. (Among is the correct word when you’re talking about 
more than two items.) This variance is known as MSBetween, or MSB.

You now have three estimates of population variance: MST, MSW, and MSB. What 
do you do with them?

Remember that the original objective is to test a hypothesis about three means. 
According to H0, any differences you see among the three sample means are due 
strictly to chance. The implication is that the variance among those means is the 
same as the variance of any three numbers selected at random from the 
population.

If you could somehow compare the variance among the means (that’s MSB, 
remember) with the population variance, you could see if that holds up. If only 
you had an estimate of the population variance that’s independent of the differ-
ences among the groups, you’d be in business.
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Ah, but you do have that estimate. You have MSW, an estimate based on pooling 
the variances within the samples. Assuming those variances represent equal pop-
ulation variances, this is a pretty solid estimate. In this example, it’s based on  
24 degrees of freedom.

The reasoning now becomes: If MSB is about the same as MSW, you have evidence 
consistent with H0. If MSB is significantly larger than MSW, you have evidence 
that’s inconsistent with H0. In effect, you transform these hypotheses:

H0: μ1 = μ2 =μ3

H1: Not H0

into these

H0: σB
2≤ σW

2

H1: σB
2 >σW

2

Rather than carry out multiple t-tests among sample means, you perform a test of 
the difference between two variances.

What is that test? In Chapter 11, I show you the test for hypotheses about two vari-
ances. It’s called the F-test. To perform this test, you divide one variance by the 
other. You evaluate the result against a family of distributions called the F- 
distribution. Because two variances are involved, two values for degrees of free-
dom define each member of the family.

For this example, F has df = 2 (for the MSB) and df = 24 (for the MSW). Figure 12-1 
shows what this member of the F family looks like. For our purposes, it’s the dis-
tribution of possible F values if H0 is true. (Refer to the section visualizing the 
F-Distribution in Chapter 11.)

The test statistic for the example is

F2 24
701 34
15 31

45 81,
.
.

.

What proportion of area does this value cut off in the upper tail of the F- 
distribution? From Figure 12-1, you can see that this proportion is microscopic, as 
the values on the horizontal axis only go up to 5. (And the proportion of area 
beyond 5 is tiny.) It’s way less than .05.

This means that it’s highly unlikely that differences among the means are due to 
chance. It means that you reject H0.
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This whole procedure for testing more than two samples is called the analysis of 
variance, often abbreviated as ANOVA. In the context of an ANOVA, the denomina-
tor of an F-ratio has the generic name error term. The independent variable is 
sometimes called a factor. So, this is a single-factor (or one-factor) ANOVA.

In this example, the factor is Training Method. Each instance of the independent 
variable is called a level. The independent variable in this example has three levels.

More complex studies have more than one factor, and each factor can have many 
levels.

Meaningful relationships
Take another look at the mean squares in this example, each with its sum of 
squares and degrees of freedom. Before, when I calculated each mean square for 
you, I didn’t explicitly show you each sum of squares, but here I include them:

MS SS
dfB

B

B

1402 68
2

701 34. .

MS SS
dfW

W

W

367 32
24

15 31. .

MS SS
dfT

T

T

1770
26

68 08.

FIGURE 12-1: 
The F-distribution 

with 2 and  
24 degrees of 

freedom.
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Start with the degrees of freedom: dfB = 2, dfW = 24, and dfT = 26. Is it a coinci-
dence that they add up? Hardly. It’s always the case that

df df dfB W T

How about those sums of squares?

1402 68 367 32 1770. .

Again, this is no coincidence. In the analysis of variance, this always happens:

SS SS SSB W T

In fact, statisticians who work with the analysis of variance speak of partitioning 
(read “breaking down into non-overlapping pieces”) the SST into one portion for 
the SSB and another for the SSW and partitioning the dfT into one amount for the 
dfB and another for the dfW.

After the F-test
The F-test enables you to decide whether or not to reject H0. After you decide to 
reject, then what? All you can say is that somewhere within the set of means, 
something is different from something else. The F-test doesn’t specify what those 
“somethings” are.

Planned comparisons
To get more specific, you have to do some further tests. Not only that — you have 
to plan those tests in advance of carrying out the ANOVA.

What are those tests? Given what I mention earlier in this chapter, this might sur-
prise you: t-tests. Although this might sound inconsistent with the increased 
alpha of multiple t-tests, it’s not. If an analysis of variance enables you to reject 
H0, it’s okay to use t-tests to turn the magnifying glass on the data and find out 
where the differences are. And, as I’m about to show you, the t-test you use is 
slightly different from the one I discuss in Chapter 11.

These post-ANOVA t-tests are called planned comparisons. Some statisticians refer 
to them as a priori tests. I illustrate by following through with the example. Sup-
pose you had reason to believe, before you gathered the data, that Method 1 would 
result in higher scores than Method 2 and that Method 2 would result in higher 
scores than Method 3. In that case, you plan in advance to compare the means of 
those samples in the event your ANOVA-based decision is to reject H0.
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The formula for this kind of t-test is

t x x

MS
N NW

1 2

1 2

1 1

It’s a test of

H0: μ1 ≤ μ2

H1: μ1 > μ2

MSW takes the place of the pooled estimate sp
2 I show you in Chapter 11. In fact, 

when I introduced MSW, I showed how it’s just a pooled estimate that can incor-
porate variances from more than two samples. The df for this t-test is dfW rather 
than (N1–1) + (N2–1).

For this example, the method 1 versus method 2 comparison is

t x x

MS
N NW

1 2

1 2

1 1
93 44 85 2

15 31 1
9

1
10

4 59. .

.
.

With df = 24, this value of t cuts off a miniscule portion of area in the upper tail of 
the t-distribution. The decision is to reject H0.

The planned comparison t-test formula I show you matches up with the t-test for 
two samples. You can write the planned comparison t-test formula in a way that 
sets up additional possibilities. Start by writing the numerator

x x1 2

a bit differently:

1 11 2x x

The +1 and –1 are comparison coefficients. I refer to them, in a general way, as c1 and 
c2. In fact, c3 and x3 can enter the comparison, even if you’re just comparing x1 
with x2:

1 1 01 2 3x x x

The important thing is that the coefficients add up to zero.
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Here’s how the comparison coefficients figure into the planned comparison t-test 
formula for a study that involves three samples:

t c x c x c x

MS c
N

c
N

c
NW

1 1 2 2 3 3

1
2

1

2
2

2

3
2

3

Here’s what you come up with if you use this formula to compare Method 2 with 
Method 3:

t c x c x c x

MS c
N

c
N

c
NW

1 1 2 2 3 3

1
2

1

2
2

2

3
2

3

0 93 44 1. 885 2 1 75 25

15 31 0
9

1
10

1
8

5 36
2 2

2

. .

.

.

The value for t indicates that the results from Method 2 are significantly higher 
than the results from Method 3.

You can also plan a more complex comparison — say, Method 1 versus the average 
of Method 2 and Method 3. Begin with the numerator. That’s

x
x x

1
2 3

2

With comparison coefficients, you can write this as

1 1
2

1
21 2 3x x x

If you’re more comfortable with whole numbers, you can write it as

2 1 11 2 3x x x

Plugging these whole numbers into the formula gives you

t c x c x c x

MS c
N

c
N

c
NW

1 1 2 2 3 3

1
2

1

2
2

2

3
2

3

2 93 44 1. 885 2 1 75 25

15 31 2
9

1
10

1
8

9 97
2

2 2

. .

.

.

Again, it’s strong evidence for rejecting H0.

Unplanned comparisons
Things would get boring if your post-ANOVA testing is limited to comparisons you 
have to plan in advance. Sometimes you want to snoop around your data and see 
if anything interesting reveals itself. Sometimes, something jumps out at you that 
you didn’t anticipate.
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When this happens, you can make comparisons you didn’t plan on. These com-
parisons are called a posteriori tests, post hoc tests, or simply unplanned comparisons. 
Statisticians have come up with a wide variety of these tests, many of them with 
exotic names and many of them dependent on special sampling distributions.

The idea behind these tests is that you pay a price for not having planned them in 
advance. That price has to do with stacking the deck against rejecting H0 for the 
particular comparison.

Of all the unplanned tests available, the one I like best is a creation of famed stat-
istician Henry Scheffé. Rather than rely on esoteric formulas and distributions, 
you start with the test I already showed you and then add a couple of easy-to-do 
extras.

The first extra is to understand the relationship between t and F. I’ve shown you 
the F-test for three samples. You can also carry out an F-test for two samples. 
That F-test has dfB = 1 and dfW = (N1 – 1) + (N2 – 1). The df for the t-test, of course, 
is (N1 – 1) + (N2 – 1). Hmm. Seems like they should be related somehow.

They are. The relationship between the two-sample t and the two-sample F is

F t 2

Now I can tell you the steps for performing Scheffé’s test:

1. Calculate the planned comparison t-test.

2. Square the value to create F.

3. Find the critical value of F for dfB and dfW at α = .05 (or whatever α you 
choose).

4. Multiply this critical F by the number of samples – 1.

The result is your critical F for the unplanned comparison. I call this F’.

5. Compare the calculated F to F’.

If the calculated F is greater, reject H0 for this test. If it’s not, don’t reject H0 for 
this test.

Imagine that in the example, you didn’t plan in advance to compare the mean of 
Method 1 with the mean of Method 3. (In a study involving only three samples, 
that’s hard to imagine, I grant you.) The t-test is

t c x c x c x

MS c
N

c
N

c
NW

1 1 2 2 3 3

1
2

1

2
2

2

3
2

3

1 93 44 0. 885 2 1 75 25

15 31 1
9

0
10

1
8

9 57
2 2

2

. .

.

.
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Squaring this result gives you

F t 2 2
9 57 91 61. .

For F with 2 and 24 df and α = .05, the critical value is 3.403. (You can look that  
up in a table in a statistics textbook, or you can use the worksheet function  
F.INV.RT.) So

F FCritical’ . .3 1 2 3 403 6 806

Because the calculated F, 91.61, is greater than F’, the decision is to reject H0. You 
have evidence that method 1’s results are different from method 3’s results.

Data analysis tool: Anova: Single Factor
The calculations for the ANOVA can become intense. Excel has a data analysis  
tool that does the heavy lifting. It’s called Anova: Single Factor. Figure  12-2  
shows this tool along with the data for the preceding example.

Follow these steps for using this tool:

1. Enter the data for each sample into a separate data array.

For this example, the data in the method 1 sample are in column B, the data in 
the method 2 sample are in column C, and the data for the method 3 sample 
are in column D.

2. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select Anova: Single Factor.

FIGURE 12-2: 
The Anova: Single 

Factor data 
analysis tool 

dialog box.
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4. Click OK to open the Anova: Single Factor dialog box.

This is the dialog box in Figure 12-2.

5. In the Input Range box, enter the cell range that holds all the data. (Make 
sure the Columns radio button in the Grouped By area is selected.)

For the example, the data are in $B$2:$D$12. (Note the $ signs for absolute 
referencing.)

6. If the cell ranges include column headings, select the Labels in First Row 
check box.

I included the headings in the ranges, so I selected the box.

7. The Alpha box has 0.05 as a default. Change that value if you’re so 
inclined.

8. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

9. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with 
the results.

Figure 12-3 shows the tool’s output, after I expand the columns. The output fea-
tures two tables: SUMMARY and ANOVA. The SUMMARY table provides summary 
statistics of the samples — the number in each group, the group sums, averages, 
and variances. The ANOVA table presents the Source of Variation, sums of squares, 
df, mean squares, FP-value, and critical F for the indicated df. The P-value is the 
proportion of area that the F cuts off in the upper tail of the F-distribution. If this 
value is less than .05, reject H0.

FIGURE 12-3: 
Output from  

the Anova:  
Single Factor 
analysis tool.
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Comparing the means
Excel’s ANOVA tool provides no built-in facility for carrying out planned (or 
unplanned) comparisons among the means. With a little ingenuity, however, you 
can use the Excel worksheet function SUMPRODUCT to make those comparisons.

The worksheet page with the ANOVA output is the launching pad for the planned 
comparisons. In this section, I take you through one planned comparison — the 
mean of method 1 versus the mean of method 2.

Begin by creating columns that hold important information for the comparisons. 
Figure 12-4 shows what I mean. I put the comparison coefficients in column J, the 
squares of those coefficients in column K, and the reciprocal of each sample size 
in column L. (That’s 1/9,1/10, and 1/8.)

A few rows below those cells, I put t-test-related information — the t-test numer-
ator, the denominator, and the value of t. I use separate cells for the numerator 
and denominator to simplify the formulas. You can put them together in one big 
formula and just have a cell for t, but it’s hard to keep track of everything.

SUMPRODUCT takes arrays of cells, multiplies the numbers in the corresponding 
cells, and sums the products. (This particular function is on the Math & Trig 
Functions menu, not the Statistical Functions menu.) I used SUMPRODUCT to mul-
tiply each coefficient by each sample mean and then add the products. I stored 
that result in K11. That’s the numerator for the planned comparison t-test. The 
formula for K11 is

=SUMPRODUCT(J5:J7,D5:D7)

FIGURE 12-4: 
Carrying out a 

planned 
comparison.
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The array J5:J7 holds the comparison coefficients, and D5:D7 holds the sample 
means.

K12 holds the denominator. I selected K12 in Figure 12-4 so that you can see its 
formula on the Formula bar:

=SQRT(D13*(SUMPRODUCT(K5:K7,L5:L7)))

D13 has the MSW. SUMPRODUCT multiplies the squared coefficients in K5:K7 by the 
reciprocals of the sample sizes in L5:L7 and sums the products. SQRT takes the 
square root of the whole thing.

K13 holds the value for t. That’s just K11 divided by K12.

K14 presents the P-value for t — the proportion of area that t cuts off in the upper 
tail of the t-distribution with df = 24. The formula for that cell is

=T.DIST.RT(K13,C13)

The arguments are the calculated t (in K13) and the degrees of freedom for MSW 
(in C13).

If you change the coefficients in J5:J7, you instantaneously create and complete 
another comparison.

In fact, I’ll do that right now, and show you Scheffé’s post hoc comparison. That 
one, in this example, compares the mean of method 1 with the mean of method 3. 
Figure 12-5 shows the extra information for this test, starting a couple of rows 
below the t-test.

FIGURE 12-5: 
Carrying out a 

post hoc 
comparison.
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Cell K16 holds F, the square of the t value in K13. K17 has F’, the product of  
C12 (dfB, which is the number of samples – 1) and G12 (the critical value of F for 2 
and 24 degrees of freedom and α = .05). K16 is greater than K17, so reject H0 for 
this comparison.

Another Kind of Hypothesis,  
Another Kind of Test

The preceding ANOVA works with independent samples. As Chapter 11 explains, 
sometimes you work with matched samples. For example, sometimes a person 
participates in each condition of the independent variable. In this section, I intro-
duce the ANOVA you use when you have more than two matched samples.

This type of ANOVA is called repeated measures. You might see it called other 
names, too, like randomized blocks or within subjects.

Working with repeated measures ANOVA
To show how this type of ANOVA works, I extend the example from Chapter 11. In 
that example, ten people participate in a weight loss program. Table 12-3 shows 
their data over a three-month period.

Is the program effective? This question calls for a hypothesis test:

H0: μBefore = μ1 = μ2 = μ3H1: Not H0

Once again, I set α = .05.

As in the previous ANOVA, start with the variances in the data. The MST is the var-
iance in all 40 scores from the grand mean, which is 187.525:

MST

198 187 525 201 187 525 175 187 525
40 1

2 2 2
. . ... .

318 20.

The people participating in the weight loss program also supply variance. Each 
one’s overall mean (their average over the four measurements) varies from the 
grand mean. Because these data are in the rows, I call this MSRows:

MSRows

192 75 187 525 200 187 525 181 187 525
2 2 2

. . . ... .
110 1

1292 41.
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The means of each column also vary from the grand mean:

MSColumns

192 4 187 525 189 5 187 525 185 8 187 525
2 2

. . . . . .
2 2

182 4 187 525

4 1

189 69

. .

.

One more source of variance is in the data. Think of it as the variance left over 
after you pull out the variance in the rows and the variance in the columns from 
the total variance. Actually, it’s more correct to say that it’s the sum of squares 
left over when you subtract the SSRows and the SSColumns from the SST.

This variance is called MSError. In the ANOVA, the denominator of an F is called an 
error term. So, the word error here gives you a hint that this MS is a denominator 
for an F.

To calculate MSError, you use the relationships among the sums of squares and 
among the df.

MS SS
df

SS SS SS
df df dfError

Error

Error

T Rows Columns

T Rows Collumns

209 175
27

7 75. .

Here’s another way to calculate the dfError:

dfError number of rows 1 number of columns 1

TABLE 12-3	 Data for the Weight Loss Example
Person Before One Month Two Months Three Months Mean

1 198 194 191 188 192.75

2 201 203 200 196 200.00

3 210 200 192 188 197.50

4 185 183 180 178 181.50

5 204 200 195 191 197.50

6 156 153 150 145 151.00

7 167 166 167 166 166.50

8 197 197 195 192 195.25

9 220 215 209 205 212.25

10 186 184 179 175 181.00

Mean 192.4 189.5 185.8 182.4 187.525
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To perform the hypothesis test, you calculate the F:

F MS
MS

Columns

Error

189 69
7 75

24 49.
.

.

With 3 and 27 degrees of freedom, the critical F for α = .05 is 2.96. (Look it up or 
use the Excel worksheet function F.INV.RT.) The calculated F is larger than the 
critical F, so the decision is to reject H0.

What about an F involving MSRows? That one doesn’t figure into H0 for this exam-
ple. If you find a significant F, all it shows is that people are different from one 
another with respect to weight and that doesn’t tell you much.

As is the case with the ANOVA I showed you earlier, you plan comparisons to zero 
in on the differences. You can use the same formula, except that you substitute 
MSError for MSW:

t c x c x c x c x

MS c
N

c
N

c
N

c
NError

1 1 2 2 3 3 4 4

1
2

1

2
2

2

3
2

3

4
2

4

cc x c x c x c x

MS c c c c
NError

1 1 2 2 3 3 4 4

1
2

2
2

3
2

4
2

The formula works out to the expression on the right because, in a repeated mea-
sures design, all the Ns are the same.

The df for this test is dfError.

For Scheffé’s post hoc test, you also follow the same procedure as earlier and sub-
stitute MSError for MSW. The only other change is to substitute dfColumns for dfB and 
substitute dfError for dfW when you find F’.

Getting trendy
In situations like the one in the weight loss example, you have an independent 
variable that’s quantitative  — its levels are numbers (0 months, 1 month,  
2 months, 3 months). Not only that, but in this case, the intervals are equal.

With that kind of an independent variable, it’s often a good idea to look for trends 
in the data rather than just plan comparisons among means. If you graph the 
means in the weight loss example, they seem to approximate a line, as Figure 12-6  
shows. Trend analysis is the statistical procedure that examines that pattern. The 
objective is to see if the pattern contributes to the significant differences among 
the means.

A trend can be linear, as it apparently is in this example, or nonlinear (in which 
the means fall on a curve). In this example, I only deal with linear trend.
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To analyze a trend, you use comparison coefficients — those numbers you use in 
planned comparisons. You just use them in a slightly different way than you did 
before.

Here, you use comparison coefficients to find a sum of squares for linear trend. I 
abbreviate that as SSLinear. This is a portion of SSColumns. In fact,

SS SS SSLinear Nonlinear Columns

Also,

df df dfLinear Nonlinear Columns

After you calculate SSLinear, you divide it by dfLinear to produce MSLinear. This is 
extremely easy because dfLinear = 1. Divide MSLinear by MSError and you have an F. If 
that F is higher than the critical value of F with df = 1 and dfError at your α–level, 
then weight is decreasing in a linear way over the period of the weight loss 
program.

The comparison coefficients are different for different numbers of samples. For 
four samples, the coefficients are –3, –1, 1, and 3. To form the SSLinear, the for-
mula is

SS
N cx

cLinear

2

2

FIGURE 12-6: 
The means for 
the weight loss 

example.
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In this formula, N is the number of people, and c represents the coefficients. 
Applying the formula to this example,

SS
N cx

cLinear

2

2

10 3 192 4 1 189 5 1 185 8 3. . . 182 4

3 1 3 1

567 845

2

2 2 2 2

.

.

This is such a large proportion of SSColumns that SSNonlinear is really small:

SS SS SSNonlinear Columns Linear 569 075 567 845 1 23. . .

As I point out earlier, df = 1, so MSLinear is conveniently the same as SSLinear.

Finally,

F MS
MS

Linear

Error

567 85
7 75

73 30.
.

.

A LITTLE MORE ON TREND
The coefficients I show you represent one possible component of what underlies the 
differences among the four means in the example — the linear component. With four 
means, it’s also possible to have other components. I lump those other components 
together into a category I call nonlinear. Now I discuss them explicitly.

One possibility is that four means can differ from one another and form a trend that 
looks like a curve, as shown in the first sidebar figure.
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(continued)

Four means can form still another kind of trend, as shown in the second sidebar figure:

The first kind, where the trend changes direction once, is called a quadratic component. 
In the first figure it increases, and then it decreases. The second, where the trend 
changes direction twice, is called a cubic component. In the second figure, it increases, 
decreases, and then increases again. In Figure 12-6, the trend is linear and doesn’t 
change direction (it just keeps decreasing).

Quadratic and cubic components have coefficients, too, and here they are:

Quadratic: 1, –1, –1, 1

Cubic: –1, 3, –3, 1

You test for these components the same way you test for the linear component. A trend 
can be a combination of components: If you have a significant F, one or more of these 
trend components might be significant.

Linear, quadratic, and cubic are as far as you can go with four means. With five means, 
you can look for those three plus a quartic component (three direction-changes), and 
with six you can try to scope out all the preceding plus a quintic component (four  
direction-changes). What do the coefficients look like?



268      PART 3  Drawing Conclusions from Data

The critical value for F (with 1 and 27 degrees of freedom and α = .05) is 4.21 
(which I use F.INV.RT to calculate). Because the calculated value is larger than the 
critical value, statisticians would say that the data shows a significant linear com-
ponent. This, of course, verifies what you see shown earlier, in Figure 12-6.

Data analysis tool: Anova: Two-Factor  
Without Replication
Huh? Is that a misprint? Two-factor? Without Replication? What’s that all about?

Here’s the story: If you’re looking through the data analysis tools for something 
like Anova: Single Factor Repeated Measures, you won’t find it. The tool you’re 
looking for is there, but it’s hiding out under a different name.

Figure  12-7 shows this tool’s dialog box along with the data for the preceding 
weight loss example.

For five means, they’re

Linear: –2, –1, 0, 1, 2

Quadratic: 2, –1, –2, –1, 2

Cubic: –1, 2, 0, –2, 1

Quartic: 1, –4, 6, –4, 1

And for six means:

Linear: –5, –3, –1, 1, 3, 5

Quadratic: 5, –1, –4, –4, –1, 5

Cubic: –5, 7, 4, –4, –7, 5

Quartic: 1, –3, 2, 2, –3, 1

Quintic: –1, 5, –10, 10, –5, 1

I could go on with more means, coefficients, and exotic component names (hextic?  
septic?), but enough already. This should hold you for a while.

(continued)
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Follow these steps for using this tool:

1. Type the data for each sample into a separate data array; be sure to put 
the label for each person in a data array as well.

For this example, the labels for Person are in column B. The data in the Before 
sample are in column C, the data in the 1 Month sample are in column D, the 
data for the 2 Month sample are in column E, and the data for the 3 Month 
sample are in column F.

2. Choose Data ➪   Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select Anova: Two-Factor Without Replication.

4. Click OK to open the select Anova: Two-Factor Without Replication 
dialog box.

This is the dialog box shown in Figure 12-7.

5. In the Input Range box, type the cell range that holds all the data.

For the example, the data are in $B$2:$F$12. Note the $ signs for absolute 
referencing. Note also — and this is important — the Person column is part of 
the data.

6. If the cell ranges include column headings, select the Labels option.

I included the headings in the ranges, so I selected the box.

7. The Alpha box has 0.05 as a default. Change that value if you want a 
different α.

8. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

FIGURE 12-7: 
The Anova: 
Two-Factor 

Without 
Replication 

data-analysis tool 
dialog box.
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9. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with 
the results.

Figure 12-8 shows the tool’s output, after I expand the columns. The output fea-
tures two tables: SUMMARY and ANOVA.

The SUMMARY table is in two parts. The first part provides summary statistics for 
the rows, whereas the second part provides summary statistics for the columns. 
Summary statistics include the number of scores in each row and in each column, 
along with the sums, means, and variances.

The ANOVA table presents the sums of squares, df, mean squares, F, p-values, and 
critical F-ratios for the indicated df. The table features two values for F. One F is 
for the rows, and the other is for the columns. The p-value is the proportion of 
area that the F cuts off in the upper tail of the F-distribution. If this value is less 
than .05, reject H0.

Although the ANOVA table includes an F for the rows, this doesn’t concern you in 
this case, because H0 is only about the columns in the data. Each row represents 
the data for one person. A high F just implies that people are different from one 
another, and that’s not news.

FIGURE 12-8: 
Output from  

the Anova: 
Two-Factor 

Without 
Replication data 

analysis tool.
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Analyzing trend
Excel’s Anova: Two-Factor Without Replication tool provides no way for perform-
ing a trend analysis. As with the planned comparisons, a little ingenuity takes you 
a long way. The Excel worksheet functions SUMPRODUCT and SUMSQ help with the 
calculations.

The worksheet page with the ANOVA output gives the information you need to get 
started. In this section, I walk you through the analysis of linear trend.

I start by putting the comparison coefficients for linear trend into J15 through J18, 
as shown in Figure 12-9.

In J22 through J24, I put information related to SSLinear  — the numerator, the 
denominator, and the value of the sum of squares. I use separate cells for the 
numerator and denominator to simplify the formulas.

SUMPRODUCT takes arrays of cells, multiplies the numbers in the corresponding 
cells, and sums the products. (This function is on the Math & Trig menu, not the 
Statistical Functions menu.) I used SUMPRODUCT to multiply each coefficient by 
each sample mean and then add the products. I stored that result in J22. That’s the 
numerator for the SSLinear. In Figure 12-9, I selected J22 so that you could see its 
formula on the Formula bar:

=B15*SUMPRODUCT(J15:J18,D15:D18)^2

FIGURE 12-9: 
Carrying out a 
trend analysis.
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The value in B15 is the number in each column. The array J15:J18 holds the com-
parison coefficients, and D15:D18 holds the column means.

J23 holds the denominator. Its formula is

=SUMSQ(J15:J18)

SUMSQ (another function on the Math & Trig Functions menu) squares the coeffi-
cients in J15:J18 and adds them.

J24 holds the value for SSLinear. That’s J22 divided by J23.

Figure 12-9 also shows that, in the ANOVA table, I’ve inserted two rows above the 
row for Error. One row holds the SS, df, MS, F, p-value, and critical F for Linear, 
and the other holds these values for Nonlinear. SSNonlinear in B26 is B24–B25.

The F for Linear is D25 divided by D27. The formula for the p-value in F25 is

=F.DIST.RT(E25,C25,C27)

The first argument, E25, is the F. The second and third arguments are the df.

The formula for the critical F in G25 is

=F.INV.RT(0.05,C25,C27)

The first argument is α, and the second and third are the df.

ANOVA on the iPad
To carry out an ANOVA on the iPad, you use the StatPlus add-in.

1. Enter your data into an array.

It’s a good idea to name the tab of the worksheet the array is on. In this 
example, I work with the data in Figure 12-2, which is on a tab labeled ANOVA 
Single Factor Data.

2. Tap Insert | Add-Ins | StatPlus to open the Add-Ins box.

If you’ve used StatPlus recently, its icon appears immediately under Recently 
Used Add-Ins. If not, find it in My Add-Ins. Tapping StatPlus opens the StatPlus 
panel on the right side of the screen.
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3. In the StatPlus panel, tap New Analysis to open the Commands box.

4. Select an Analysis Tool.

The Commands box is organized into categories. I tap the ANOVA/MV category, 
which opens to reveal two options for doing a one-way ANOVA. In this 
example, I use one-way ANOVA (unstacked), so I tap that choice to open the 
one-way ANOVA panel.

5. Enter the values into the boxes on the StatPlus panel.

a. On the drop-down menu for the Columns For box, select the name of the 
tab where the data lives. If the spreadsheet is open to that tab, its name 
already appears in the Columns For box.

b. In the Headers box, you can choose either Name in First Row or No 
Headers. I stick with the default, Name in First Row.

c. Tap the screen and select the range for the variables. In this example, that’s 
B2:D12. Then tap the little three-cells-and-a-plus icon to open the Variables 
panel. Tap Add to return to the one-way ANOVA panel, which now shows 
the range inside the Variables box.

Figure 12-10 shows the completed one-way ANOVA panel.

FIGURE 12-10: 
The completed 

StatPlus One-way 
ANOVA pane.
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6. Tap Run.

StatPlus opens a new worksheet showing the results. (See Figure 12-11.)

In addition to the ANOVA table, StatPlus shows other results that are beyond the 
scope of this discussion. After the Model summary, it’s all statistical tests named 
after the famous statisticians who created them.

You don’t have to compute the planned comparisons I show you earlier in this 
chapter. StatPlus does that for you. Because the planned comparison t-tests are 
the first stage of the Scheffé test, StatPlus presents them in the Scheffé section of 
the Comparisons Among Groups area.

ANOVA on the iPad: Another Way
The preceding example covered the unstacked option for ANOVA on the StatPlus 
add-in. Now I turn your attention to another option. In this one, the format, or 
“shape,” of the data is different from the preceding example.

FIGURE 12-11: 
One-way  

ANOVA results.
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Figure 12-12 shows two data shapes. The one on the left is the format you’re used 
to. It’s called wide or unstacked. The one on the right is called narrow or stacked (or 
tall). All the data is there, but in a different arrangement. The left column holds all 
levels of the independent variable, and the right column holds all the values of the 
dependent variable. In this format, the independent variable often goes by the 
name predictor variable, and the dependent variable is called the response variable.

Transforming data from wide to narrow format is called melting. Transforming 
data from narrow to wide format is called pivoting. Languages like R and Python 
have functions that melt and pivot data.

To perform the ANOVA in this example, I use the StatPlus one-way ANOVA (use 
Group Variable) tool.

1. Enter your data into an array.

It’s a good idea to name the tab of the worksheet the array is on. In this 
example, I work with the data in the stacked shape in Figure 12-2, which is  
on a tab labeled ANOVA Single Factor Data.

FIGURE 12-12: 
Two data shapes: 
The shape on the 

left is wide 
(unstacked), and 
the shape on the 

right is stacked 
(tall; narrow).
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2. Tap Insert | Add-Ins | StatPlus to open the Add-Ins box.

If you’ve used StatPlus recently, its icon appears immediately under Recently 
Used Add-Ins. If not, find it in My Add-Ins. Tapping StatPlus opens the StatPlus 
panel on the right side of the screen.

3. In the StatPlus panel, tap New Analysis to open the Commands box and 
then choose an Analysis Tool.

The Commands box is organized into categories. I tap the ANOVA/MV  
category, which opens to reveal two options for doing a one-way ANOVA.  
In this example, I use one-way ANOVA (use Group Variable), so I tap that  
choice to open the one-way ANOVA panel.

4. Enter the values into the boxes on the StatPlus panel.

a. In the drop-down menu for the Columns For box, select the name of the tab 
where the data lives. If the spreadsheet is open to that tab, its name already 
appears in the Columns For box.

b. In the Headers box, you can choose either Name in First Row or No 
Headers. I stick with the default, Name in First Row.

c. Tap the screen and select the range for the Response variable. In this 
example, that’s H2:H28. Then tap the little three-cells-and-a-plus icon to  
the right of Response to open the Variables panel. Tap Add to return to  
the one-way ANOVA panel, which now shows the range inside the 
Response box.

d. Tap the screen and select the range for Factor (the independent variable).  
In this example, that’s G2:G28. Then tap the little three-cells-and-a-plus icon 
to the right of Factor to open the Variables panel. Tap Add to return to the 
one-way ANOVA panel, which now shows the range inside the Factor box.

Figure 12-13 shows the completed one-way ANOVA panel.

5. Tap Run.

StatPlus opens a new worksheet with the results of the analysis. This one looks 
just like the worksheet shown in Figure 12-11.
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Repeated Measures ANOVA on the iPad
As is the case with the Analysis Toolpak, in StatPlus you use Two-Way ANOVA 
Without Replication for repeated measures ANOVA. (StatPlus does provide a 
repeated measures ANOVA tool, but it’s not part of the free version.)

Like the ANOVA in the previous example, this one works with the stacked data 
shape. Figure 12-14 shows the unstacked shape from Figure 12-7, along with the 
same data in the stacked shape.

Follow these steps to carry out the repeated measures example:

1. Enter your data into an array.

It’s a good idea to name the tab of the worksheet the array is on. In this 
example, I work with the data in the stacked shape in Figure 12-14, which  
is on a tab labeled ANOVA Single Factor Data.

2. Tap Insert | Add-Ins | StatPlus to open the Add-Ins box.

FIGURE 12-13: 
The completed 

one-way ANOVA 
panel for the use 

Group Variable 
(stacked data 

shape) tool.
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3. On the StatPlus pane, tap New Analysis to open the Commands box and 
then select an Analysis Tool.

The Commands box is organized into categories. I tap the ANOVA/MV category. 
In this example, I use Two-way ANOVA, so I tap that choice to open the 
Two-way ANOVA pane. On the two-way ANOVA pane, tap Options and then tap 
the No Interactions/Randomized Block Design option. Then tap Variables.

4. Enter the values into the boxes on the two-way ANOVA panel.

a. On the drop-down menu for the Columns For box, select the name of the 
tab that holds the data. If the spreadsheet is open to that tab, its name 
already appears in the Columns For box.

b. In the Headers box, you can choose either Name in First Row or No 
Headers. I stick with the default, Name in First Row.

c. Tap the screen and select the range for the Response variable (also known 
as “the dependent variable”). In this example, that’s Weight in J2:J42. Then 
tap the little three-cells-and-a-plus-sign icon to the right of Response to open 
the Variables panel. Tap Add to return to the two-way ANOVA panel, which 
now shows the range inside the Response box.

FIGURE 12-14: 
Unstacked (left) 

and stacked 
(right) data 

shapes for the 
repeated 

measures 
example.
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d. Tap the screen and select the range for Factor 1. In this example, that’s 
Person in H2:H42. Then tap the little three-cells-and-a-plus-sign icon to the 
right of Factor to open the Variables panel. Tap Add to return to the two-way 
ANOVA panel, which now shows the range inside the Factor #1 box.

e. Tap the screen and select the range for Factor #2. In this example, that’s 
Time in I2:I42. Then tap the little three-cells-and-a-plus-sign icon to the right 
of Factor to open the Variables panel. Tap Add to return to the two-way 
ANOVA panel, which now shows the range inside the Factor #1 box. 
Figure 12-15 shows the completed two-way ANOVA panel.

5. Tap Run.

StatPlus opens a new worksheet showing the results of the analysis. The 
results in the ANOVA table are identical to the results in the ANOVA table 
shown earlier, in Figure 12-8.

FIGURE 12-15: 
The completed 

two-way ANOVA 
panel for the 

repeated 
measures 

analysis.
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Chapter 13
Slightly More 
Complicated Testing

In Chapter 11, I show you how to test hypotheses with two samples. In Chapter 12, 
I show you how to test hypotheses when you have more than two samples. The 
common thread through both chapters is that one independent variable (also 

called a factor) is involved.

Many times, you have to test the effects of more than one factor. In this chapter, 
I show how to analyze two factors within the same set of data. Several types of 
situations are possible, and I describe Excel data analysis tools that deal with 
each one.

Cracking the Combinations
FarKlempt Robotics, Inc., manufactures battery-powered robots. The company’s 
leaders want to test three rechargeable batteries for these robots on a set of three 
tasks: climbing, walking, and assembling. Which combination of battery and task 
results in the longest battery life?

IN THIS CHAPTER

 » Working with two variables

 » Working with replications

 » Understanding interactions

 » Mixing variable types

 » Two-factor ANOVA on the iPad
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FarKlempt tests a sample of nine robots. They randomly assign each robot one 
battery and one type of task. They track the number of days each robot works 
before recharging. The data are shown in Table 13-1.

This calls for two hypothesis tests:

H0: μBattery1 = μ Battery2 = μBattery3

H1: Not H0

and

H0: μClimbing = μwalking = μAssembling

H1: Not H0

In both tests, set α = .05.

Breaking down the variances
The appropriate analysis for these tests is an analysis of variance (ANOVA). Each 
variable — Batteries and Tasks — is also called a factor. So, this analysis is called 
a two-factor ANOVA.

To understand this ANOVA, consider the variances inside the data. First focus on 
the variance in the whole set of nine numbers — MST. (T in the subscript stands 
for Total.) The mean of those numbers is 15.44. Because it’s the mean of all the 
numbers, it goes by the name grand mean.

TABLE 13-1	 FarKlempt Robots: Number of Days before Recharging in  
Three Tasks with Three Batteries

Task Battery 1 Battery 2 Battery 3 Average

Climbing 12 15 20 15.67

Walking 14 16 19 16.33

Assembling 11 14 18 14.33

Average 12.33 15.00 19.00 15.44
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Using this grand mean, the variance turns out to be

MST

12 15 44 15 15 44 18 15 44
9 1

76 22
8

9 53
2 2 2

. . ... . . .

The means of the three batteries (the column means) also vary from 15.44. That 
variance is

MSBatteries

3 12 33 15 44 3 15 00 15 44 3 19 00 1
2 2

. . . . . 55 44
3 1

67 56
2

33 78

2
.

. .

Why does the 3 appear as a multiplier of each squared deviation? When you deal 
with means, you have to take into account the number of scores that produce each 
mean.

Similarly, the means of the tasks (the row means) vary from 15.44:

MSTasks

3 15 67 15 44 3 16 33 15 44 3 14 33 15 44
2 2

. . . . . .
2

3 1
6 22

2
3 11. .

One variance remains: It’s called MSError. It’s what remains when you subtract the 
SSBatteries and the SSTasks from the SST and then divide that by the df that remains 
when you subtract dfBatteries and dfTasks from dfT:

MS SS SS SS
df df dfError

T Batteries Tasks

T Batteries Tasks

2 4. 44
4

0 61.

To test the hypotheses, you calculate one F for the effects of the batteries and 
another for the effects of the tasks. For both, the denominator (the error term) is 
MSError:

F MS
MS

F MS
MS

Batteries

Error

Tasks

Error

33 77
0 61

55 27

2 44
0

.
.

.

.

..
.

61
5 09

Each F has 2 and 4 degrees of freedom. With α = .05, the critical F in each case is 
6.94. The decision is to reject H0 for the batteries (they differ from one another to 
an extent greater than chance), but not for the tasks.

To zero in on the differences for the batteries, you carry out planned comparisons 
among the column means. (See Chapter 12 for the details.)
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Data analysis tool: Anova: Two-Factor  
Without Replication
Excel’s Anova: Two-Factor Without Replication tool carries out the analysis I  
outline in the previous section. (I use this tool for another type of analysis in 
Chapter  12.) Without Replication means that only one robot is assigned to each  
battery-task combination. If you assign more than one to each combination, 
that’s replication.

Figure  13-1 shows this tool’s dialog box along with the data for the Batteries-
Tasks example.

Follow these steps for using this tool:

1. Enter the data into the worksheet and then add the labels for the rows 
and columns.

For this example, the labels for the tasks are in cells B4, B5, and B6. The labels 
for the batteries are in cells C3, D3, and E3. The data are in cells C4 through E6.

2. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select Anova: Two-Factor Without Replication.

4. Click OK to open the Anova: Two-Factor Without Replication dialog box.

This is the dialog box shown in Figure 13-1.

5. In the Input Range box, enter the cell range that holds all the data.

For the example, the data range is $B$3:$E$6. Note the dollar signs ($) for 
absolute referencing. Note also — and this is important — the row labels are 
part of the data range. The column labels are, too. The first cell in the data 
range, B2, is blank, but that’s okay.

FIGURE 13-1: 
The Anova: 
Two-Factor 

Without 
Replication data 

analysis tool 
dialog box along 

with the 
Batteries-Tasks 

data.
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6. If the cell ranges include column headings, select the Labels option.

I included the headings in the ranges, so I selected the box.

7. The Alpha box has 0.05 as a default. Change that value if you want a 
different α.

8. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

9. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with 
the results.

Figure 13-2 shows the tool’s output, after I expanded the columns. The output 
features two tables: SUMMARY and ANOVA.

The SUMMARY table is in two parts. The first part provides summary statistics for 
the rows. The second part provides summary statistics for the columns. Summary 
statistics include the number of scores in each row and in each column along with 
the sums, means, and variances.

The ANOVA table presents the sums of squares, df, mean squares, F, P-values, and 
critical F for the indicated df. The table features two values for F. One F is for the 
rows, and the other is for the columns. The P-value is the proportion of area that 
the F cuts off in the upper tail of the F-distribution. If this value is less than .05, 
reject H0.

FIGURE 13-2: 
Output from  

the Anova: 
Two-Factor 

Without 
Replication data 

analysis tool.
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In this example, the decisions are to reject H0 for the batteries (the columns) and 
to not reject H0 for the tasks (the rows).

Cracking the Combinations Again
The preceding analysis involves one score for each combination of the two factors. 
Assigning one individual to each combination is appropriate for robots and other 
manufactured objects, where you can assume that one object is pretty much the 
same as another.

When people are involved, it’s a different story. Individual variation among 
humans is something you can’t overlook. For this reason, it’s necessary to assign 
a sample of people to a combination of factors — not just one person.

Rows and columns
I illustrate with an example. Imagine that a company has two methods of present-
ing its training information: One is via a person who presents the information 
orally, and the other is via a text. Imagine also that the information is presented 
in either a humorous way or in a technical way. I refer to the first factor as Pres-
entation Method and to the second as Presentation Style.

Combining the two levels of Presentation Method with the two levels of Presenta-
tion Style gives four combinations. The company randomly assigns 4 people to 
each combination, for a total of 16 people. After providing the training, they test 
the 16 people on their comprehension of the material.

Figure 13-3 shows the combinations, the four comprehension scores within each 
combination, and summary statistics for the combinations, rows, and columns.

Here are the hypotheses:

H0: μSpoken = μText

H1: Not H0

and

H0: μHumorous = μTechnical

H1: Not H0
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Because the two presentation methods (Spoken and Text) are in the rows, I refer 
to Presentation Type as the row factor. The two presentation styles (Humorous and 
Technical) are in the columns, so Presentation Style is the column factor.

Interactions
When you have rows and columns of data and you’re testing hypotheses about the 
row factor and the column factor, you have an additional consideration. Namely, 
you have to be concerned about the row-column combinations. Do the combina-
tions result in peculiar effects?

For the example I present, it’s possible that combining Spoken and Text with 
Humorous and Technical yields something unexpected. In fact, you can see that in 
the data in Figure 13-3: For Spoken presentation, the Humorous style produces a 
higher average than the Technical style. For Text presentation, the Humorous 
style produces a lower average than the Technical style.

A situation like that is called an interaction. In formal terms, an interaction occurs 
when the levels of one factor affect the levels of the other factor differently. The 
label for the interaction is row factor X column factor, so for this example, that’s 
Method X Type.

The hypotheses for this are

H0: Presentation Method does not interact with Presentation Style

H1: Not H0

FIGURE 13-3: 
Combining the 

levels of 
Presentation 

Method with the 
levels of 

Presentation 
Style.
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The analysis
The statistical analysis, once again, is an analysis of variance (ANOVA). As is the 
case with the earlier ANOVAs I show you, it depends on the variances in the data.

The first variance is the total variance, labeled MST. That’s the variance of all  
16 scores around their mean (the grand mean), which is 44.81:

MST

54 44 81 55 44 81 72 44 81
16 1

5674 44
15

2 2 2
. . ... . . 3378 30.

The denominator tells you that df = 15 for MST.

The next variance comes from the row factor. That’s MSMethod, and it’s the vari-
ance of the row means around the grand mean:

MSMethod

8 40 75 44 81 8 48 88 44 81
2 1

264 06
1

26
2 2

. . . . . 44 06.

The 8 multiplies each squared deviation because you have to take into account the 
number of scores that produced each row mean. The df for MSMethod is the number 
of rows – 1, which is 1.

Similarly, the variance for the column factor is

MS Style

8 43 25 44 81 8 46 38 44 81
2 1

39 06
1

39 0
2 2

. . . . . . 66

The df for MSStyle is 1 (the number of columns – 1).

Another variance is the pooled estimate based on the variances within the four 
row-column combinations. It’s called the MSWithin, or MSW. (For details on MSw 
and pooled estimates, see Chapter 12.). For this example,

MSW

4 1 12 92 4 1 12 92 4 1 12 25 4 1 12 33
4 1

. . . .
4 1 4 1 4 1

151 25
12

12 60. .

This one is the error term (the denominator) for each F you calculate. Its denomi-
nator tells you that df = 12 for this MS.

The last variance comes from the interaction between the row factor and the col-
umn factor. In this example, it’s labeled MSMethod X Type. You can calculate this in a 
couple of ways. The easiest way is to take advantage of this general relationship:

SS SS SS SS SSRow X Column T Row Factor Column Factor W
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And this one:

df df df df dfRow X Column T Row Factor Column Factor W

Another way to calculate this is

dfRow X Column number of rows - 1 number of columns - 1

The MS is

MS SS
dfRow X Column

Row X Column

Row X Column

For this example,

MS
SS
dfMethod X Style

Method X Style

Method X Style

5764 44. 2264 06 39 06 151 25
15 12 1 1

5220 06
1

5220 06

. . .

. .

To test the hypotheses, you calculate three Fs:

F
MS
MS

F MS
MS

Style

W

Method

W

39 06
12 60

3 10

264 06
12 60

20 9

.

.
.

.
.

. 55

5220 06
12 60

414 15F
MS

MS
Method X Style

W

.
.

.

For df = 1 and 12, the critical F at α= .05 is 4.75. (You can use the Excel function 
FINV to verify.) The decision is to reject H0 for the presentation method and for the 
Method X Style interaction, and to not reject H0 for the presentation style.

Data analysis tool: Anova: Two-Factor  
With Replication
Excel provides a data analysis tool that handles everything I just spelled out in the 
previous section. This one is called Anova: Two-Factor With Replication. Replica-
tion means that you have more than one score in each row-column combination.

Figure 13-4 shows this tool’s dialog box, along with the data for the Batteries-
Tasks example.
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Follow these steps for using this tool:

1. Enter the data into the worksheet, and then add labels for the rows and 
columns.

For this example, the labels for the presentation methods are in cells B3 and 
B7. The presentation types are in cells C2 and D2. The data are in cells C3 
through D10.

2. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select Anova: Two-Factor With Replication.

4. Click OK to open the Anova: Two-Factor With Replication dialog box.

This is the dialog box shown in Figure 13-4.

5. In the Input Range box, type the cell range that holds all the data.

For the example, the data are in $B$2:$D$10. Note the dollar signs ($) for 
absolute referencing. Note also — again, this is important — that the labels for 
the row factor (the particular presentation method) are part of the data range. 
The labels for the column factor are part of the range as well. The first cell in 
the range, B2, is blank, but that’s okay.

6. In the Rows per Sample box, type the number of scores in each combina-
tion of the two factors.

I typed 4 into this box.

7. The Alpha box has 0.05 as a default. Change that value if you want a 
different α.

FIGURE 13-4: 
The Anova: 

Two-Factor With 
Replication data 

analysis tool 
dialog box along 

with the 
type-method 

data.
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8. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

9. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with 
the results.

Figure 13-5 shows the tool’s output, after I expand the columns. The output fea-
tures two tables: SUMMARY and ANOVA.

The SUMMARY table is in two parts. The first part provides summary statistics for 
the factor combinations and for the row factor. The second part provides summary 
statistics for the column factor. Summary statistics include the number of scores 
in each row-column combination, in each row, and in each column along with the 
counts, sums, means, and variances.

The ANOVA table presents the sums of squares, df, mean squares, F, P-values, and 
critical F for the indicated df. The table features three values for F. One F is for the 
row factor, one for the column factor, and one for the interaction. In the table, the 
row factor is called Sample. The P-value is the proportion of area that the F cuts 
off in the upper tail of the F-distribution. If this value is less than .05, reject H0.

FIGURE 13-5: 
Output from  

the Anova: 
Two-Factor With 
Replication data 

analysis tool.
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In this example, the decisions are to reject H0 for the presentation method (the 
row factor, labeled Sample in the table), to not reject H0 for the presentation style 
(the column factor), and to reject H0 for the interaction.

Two Kinds of Variables — at Once
What happens when you have a Between Groups variable and a Within Groups 
variable — at the same time? (It’s called a mixed design.) How can that happen?

Very easily. Suppose that you want to study the effects of presentation media on 
the reading speeds of fourth-graders. You randomly assign the fourth-graders (I 
call them subjects) to read either e-readers or print books. That’s the Between 
Groups variable.

Let’s say you’re also interested in the effects of font, so you assign each subject to 
read each of these fonts: Arial, Calibri, and Haettenschweiler. (I’ve never seen a 
document in Haettenschweiler, but it’s my favorite font because “Haettenschwei-
ler” is fun to say. Try it. Am I right?) Because each subject reads all the fonts, 
that’s the Within Groups variable. For completeness, you have to randomly order 
the fonts for each subject.

What would the ANOVA table look like? Table 13-2 shows you in a generic way. It’s 
categorized into a set of sources that make up Between Groups variability and a set 
of sources that make up Within Groups variability.

TABLE 13-2	 The ANOVA Table for the Mixed ANOVA (One Between  
Groups Variable and One Within Groups Variable)

Source SS df MS F

Between SSBetween dfBetween

A SSA dfA SSA/dfA MSA/MSS/A

S/A SSS/A dfS/A SSS/A/dfS/A

Within SSWithin dfWithin

B SSB dfB SSB/dfB MSB/MSB X S/A

A X B SSA X B dfA X B SSA X B /dfA X B MSA X B/MSB X S/A

B X S/A SSB X S/A dfB XS/A SSB X S/A/dfB X S/A

Total SSTotal dfTotal
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In the Between category, A is the name of the Between Groups variable. Read S/A 
as “S within A” — it simply says that the people on one level of A are different 
from the people on other levels of A.

In the Within category, B is the name of the Within Groups variable. A X B is the 
interaction of the two variables. B X S/A is something like the B variable interact-
ing with subjects within A. As you can see, anything associated with B falls into 
the Within Groups category.

The first thing to note is the three F-ratios. The first one tests for differences 
among the levels of A; the second, for differences among the levels of B; and the 
third for the interaction of the two. Notice also that the denominator for the first 
F-ratio is different from the denominator for the other two. This happens more 
and more as ANOVAs increase in complexity.

Next, it’s important to be aware of some relationships. At the top level, you have 
the following:

SSBetween + SSWithin = SSTotal

dfBetween + dfWithin = dfTotal

The Between component breaks down further:

SSA + SSS/A = SSBetween

dfA + dfS/A = dfBetween

The Within component breaks down, too:

SSB + SSA X B + SSB X S/A = SSWithin

dfB + dfA X B + dfB X S/A = dfWithin

Knowing these relationships helps complete the ANOVA table after Excel has gone 
through its paces.

Using Excel with a Mixed Design
Someday, Excel’s Analysis ToolPak might have a choice labeled ANOVA: Mixed 
Design. That day, unfortunately, is not today (even in the fifth edition!). Instead, 
I use two ToolPak tools and knowledge about this type of design to provide the 
analysis.
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I begin with the data for the reading-speed study I describe earlier. Figure 13-6 
shows a worksheet with the data. The levels of the Between Group variable, Media 
(the A variable), are in the left column. The levels of the Within Group variable, 
Font (the B variable), are in the top row. Each cell entry is a reading speed in 
words per minute.

Next, Figure 13-7 shows the completed ANOVA table.

How do you get there? Surprisingly, it’s pretty easy, although quite a few steps are 
involved. All you have to do is run two ANOVAs on the same data and combine the 
ANOVA tables. The relationships I show you in the preceding section complete the 
pieces in the puzzle.

Follow these steps:

1. With the data entered into a worksheet, choose Data | Data Analysis 
from the main menu.

This step opens the Data Analysis dialog box.

2. From the Data Analysis dialog box, select Anova: Two-Factor Without 
Replication.

This step opens the Anova: Two-Factor Without Replication dialog box.

FIGURE 13-6: 
Data for a study 
with a Between 
Group variable 

and a Within 
Group variable.

FIGURE 13-7: 
The completed 

ANOVA table for 
the analysis of 

the data in 
Figure 13-6.
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3. In the Input Range box, enter the cell range that holds the data.

For this example, that’s C1:F9. This range includes the column headers, so be 
sure to select the Labels check box.

4. With the New Worksheet Ply radio button selected, click OK.

The result is the ANOVA table in Figure 13-8.

5. Modify the ANOVA table: Insert rows for terms from the second ANOVA, 
change names of the Sources of Variance, and delete unnecessary values:

First, insert four rows between Rows and Columns (between Row 20 and the 
original Row 21).

Next, change Rows to Between Group and Columns to Font (the name of the 
B variable).

Then, delete all information from the row that has Error in the Source column.

Finally, delete the F-ratios, P-values, and F-crits. The ANOVA table now looks 
like Figure 13-9.

6. Once again, choose Data | Data Analysis from the main menu.

7. This time, from the Data Analysis dialog box choose ANOVA: Two-Factor 
With Replication.

8. In the Input Range box, enter the cell array that holds the data, including 
the column headers.

To do this, select C1:F9 in the worksheet.

FIGURE 13-8: 
The ANOVA table 

for the first of 
two ANOVAs.

FIGURE 13-9: 
The first ANOVA 

table after 
modifications.
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9. In the Rows Per Sample box, enter the number of subjects within each 
level of the Between Groups variable.

For this example, that’s 4.

10. With the New Worksheet Ply radio button selected, click OK.

11. Copy the resulting ANOVA table and paste it into the worksheet with the 
first ANOVA, just below the first ANOVA table.

The worksheet should look like Figure 13-10.

12. Add Within Group to the first ANOVA table, four rows under Between 
Group, and calculate values for SS and df.

Type Within Group into row 24. The SS for Within Group is the SSTotal – SS 
Between Group (B28-B20). The df for Within Group is the df Total – df Between 
Group (C28-C20).

13. Copy the Sample row of data from the second ANOVA table and paste it 
into the first ANOVA table just below Between Group.

Copy and paste just the Source name (Sample), its SS, and its df.

14. Change Sample to the name of the Between Group variable (the A 
variable).

In the example, change Sample to Media.

FIGURE 13-10: 
The modified first 
ANOVA table and 

the second 
ANOVA table.
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15. In the next row, enter the name of the source for S/A and calculate its SS, 
df, and MS.

Enter Subject/Media. The SS is the SS Between Group – SS Media (B20:B21). 
The df is the df Between Group – df Media (C20:C21). The MS is the SS divided 
by the df (B22/C22).

16. In the appropriate cell, calculate the F ratio for the A variable.

That’s MSMedia divided by MSSubject/Media (D21/D22) calculated in E21. The ANOVA 
table now looks like Figure 13-11.

17. From the second ANOVA table, copy the Interaction, its SS, its df, and its 
MS, and then paste them into the first ANOVA table in the row just below 
the name of the B variable. Change Interaction to the name of the 
interaction between the A variable and the B variable.

Here you’d copy the information from Row 34 into Row 26, just below Font, 
and then change Interaction to Media X Font.

18. In the next row, type the name of the source for B X S/A and calculate its 
SS, df, and MS.

Type Font X Subject/Media into A27. The SS is the SSWithin Group – SSFont – SSMedia X Font 
(B24 – B25 – B26). The df is the dfWithin Group – dfFont – dfMedia X Font (C24 – C25 – C26). 
The MS is the SS divided by the df (B27/C27).

19. In the appropriate cells, calculate the remaining F-ratios.

In E25, divide D25 by D27. In E26, divide D26 by D27. For clarity, insert a row 
just above Total. The table now looks like Figure 13-12.

To make the table look like Figure 13-7, shown earlier, use F.DIST.RT to find the 
P-values, and F.INV.RT to find the F-crits. (I discuss these functions in  Chapter 11.) 
You can also delete the value for MSBetween Group, because it serves no purpose.

FIGURE 13-11: 
The ANOVA table 

with the 
information for 

the Between 
Group variable 
and part of the 
information for 

the Within Group 
variable.



298      PART 3  Drawing Conclusions from Data

For some nice cosmetic effects, indent the sources under the main categories 
(Between Groups and Within Groups), and center the df for the main categories.

And, what about the analysis? The completed ANOVA table shows no effect of 
Media, a significant effect of Font, and a Media X Font interaction.

This procedure uses Anova: Two-Factor With Replication, a tool that depends on 
an equal number of replications (rows) for each combination of factors. So, for 
this procedure to work, you have to have an equal number of people in each level 
of the Between Groups variable.

Graphing the Results
Because Anova: Two-Factor With Replication isn’t a built-in tool, Excel doesn’t 
produce the descriptive statistics for each combination of conditions. You have to 
have those statistics (means and standard errors) to create a chart of the results.

This, of course, isn’t hard to do. Figure 13-13 shows the Table of Means and the 
Table of Standard Errors along with the data. Each entry in the Means table is just 
the AVERAGE function applied to the appropriate cell range. So, the value in D13 is

=AVERAGE(D2:D5)

Each entry in the Standard Errors table is the result of applying three functions to 
the appropriate cell range. To show you an example, I’ve selected D18 so that its 
value appears on the Formula bar in the figure:

=STDEV.S(D2:D5)/SQRT(COUNT(D2:D5))

FIGURE 13-12: 
The ANOVA table 
with all the SS, df, 
MS, and F-ratios.
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Figure  13-14 shows the column chart for the results. To create it, I select the 
Means table (C12:F14), choose Insert | Recommended Charts from the main menu, 
and then select the Clustered Column option from the dialog box that appears. 
Then I added the error bars for the standard errors (see Chapter 23) and tweaked 
the chart. (Refer to Chapter 3.)

The chart clearly illustrates the Media X Font interaction. For Haettenschweiler, 
the reading speed is higher with the book. For each of the others, the reading 
speed is higher with the e-reader.

FIGURE 13-13: 
The data along 
with the Means 

table and the 
Standard Errors 

table.

FIGURE 13-14: 
Graphing the 

results.
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After the ANOVA
As I point out in Chapter 12, a significant result in an ANOVA tells you that an 
effect is lurking somewhere in the data. Post-analysis tests tell you where. Two 
types of tests are possible — either planned or unplanned. Chapter 12 provides the 
details.

In this example, the Between Groups variable has only two levels. For this reason, 
had a significant effect resulted, no further test would be necessary. The Within 
Groups variable, Font, is significant. Ordinarily, the test would proceed as in 
Chapter 12. In this case, however, the interaction between Media and Font neces-
sitates a different path.

With the interaction, post-analysis tests can proceed in either (or both) of two 
ways. You can examine the effects of each level of the A variable on the levels of 
the B variable, or you can examine the effects of each level of the B variable on the 
levels of the A variable. Statisticians refer to these as simple main effects.

For this example, the first way examines the means for the three fonts in a book 
and the means for the three fonts in the e-reader. The second way examines the 
means for the book versus the means for the e-reader with Haettenschweiler font, 
with Arial, and with Calibri.

Statistics texts provide complicated formulas for calculating these analyses. Excel 
makes them easy. To analyze the three fonts in the book, do a repeated measures 
ANOVA for Subjects 1 through 4. To analyze the three fonts in the e-reader, do a 
repeated measures ANOVA for Subjects 5 through 8.

For the analysis of the book versus the e-reader in the Haettenschweiler font, 
that’s a single-factor ANOVA for the Haettenschweiler data. To do this, you’d have 
to rearrange the numbers into two columns. Of course, you’d go through a similar 
procedure for each of the other fonts.

Two-Factor ANOVA on the iPad
To carry out a two-factor ANOVA on the iPad, you use the StatPlus add-in. In this 
example, I cover the data in Figure 13-4. It’s pretty straightforward, as long as the 
data is in the proper format for StatPlus. Accordingly, I’ve rearranged the data 
into the stacked format you see in Figure 13-15.
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1. Enter your data into an array.

It’s a good idea to name the tab of the worksheet the array is on. For the data 
in Figure 13-15, I’ve named the worksheet tab Replication Data Stacked.

2. Tap Insert | Add-ins | StatPlus to open the Add-Ins box.

If you’ve used StatPlus recently, its icon appears immediately under Recently 
Used Add-Ins. If not, find it in My Add-Ins. Tapping StatPlus opens the StatPlus 
panel on the right side of the screen.

3. In the StatPlus panel, tap New Analysis to open the Commands box.

4. Select an analysis tool.

The Commands box is organized into categories. I tap the ANOVA/MV category 
and then tap Two-Way ANOVA.

5. Enter the values into the boxes on the StatPlus panel.

On the drop-down menu for the Columns For box, select the name of the 
worksheet where the data lives. If that worksheet is active, its name already 
appears in the Columns For box.

In the Headers box, you can choose either Name in First Row or No Headers. 
I stick with the default, Name in First Row.

Tap the screen and select the ranges for the variables.

For Response (the dependent variable), that’s D2:D18. Then tap the little 
three-cells-and-a-plus-sign icon to open the Variables panel. Tap Add to return 
to the Two-Way ANOVA panel, which now shows the range inside the 
Response box.

FIGURE 13-15: 
The data from 

Figure 13-4, 
rearranged into 
stacked format.
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6. Repeat that sequence for Factor #1 (B2:B18) and for Factor #2 (C2:C18).

Figure 13-16 shows the completed One-Way ANOVA panel.

7. Tap Run.

StatPlus opens a new worksheet with the results. (See Figure 13-17.)

FIGURE 13-16: 
The completed 

StatPlus Two-Way 
ANOVA panel.

FIGURE 13-17: 
Two-way ANOVA 

results.
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Chapter 14
Regression: Linear 
and Multiple

One of the main things you do when you work with statistics is make pre-
dictions. The idea is to take data on one or more variables and use these 
data to predict the value of another variable. To do this, you have to 

understand how to summarize relationships among variables, and to test hypoth-
eses about those relationships.

In this chapter, I introduce regression, a statistical way to do just that. Regression 
also enables you to use the details of relationships to make predictions. First, I show 
you how to analyze the relationship between one variable and another. Then I show 
you how to analyze the relationship between a variable and two others. These anal-
yses involve a good bit of calculation, and Excel is more than equal to the task.

The Plot of Scatter
Sahutsket University is an exciting, dynamic institution. Every year, the school 
receives thousands of applications. One challenge the admissions office faces is 
this: Applicants want the office to predict what their GPAs (grade-point averages 
on a 4.0 scale) will be if they attend Sahutsket.

IN THIS CHAPTER

 » Summarizing a relationship

 » Working with regression

 » Hypothesis testing and regression

 » Balancing many relationships

 » Regression on the iPad
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What’s the best prediction? Without knowing anything about an applicant, and 
only knowing its own students’ GPAs, the answer is clear: It’s the average GPA at 
Sahutsket U. Regardless of who the applicant is, that’s all the admissions office 
can say if its knowledge is limited.

With more knowledge about the students and about the applicants, a more accu-
rate prediction becomes possible. For example, if Sahutsket maintains records on 
its students’ total SAT scores, the admissions office can match up each student’s 
GPA with their SAT score to see if the two pieces of data are somehow related. If 
they are, an applicant can supply their SAT score, and the admissions office can 
use that score to help make a prediction.

Figure 14-1 shows the GPA-SAT match-up in a graphical way. Because the points 
are scattered, it’s called a scatterplot. By convention, the vertical axis (the y-axis) 
represents what you’re trying to predict. That’s also called the dependent variable 
or the y-variable. In this case, that’s GPA. Also by convention, the horizontal axis 
(the x-axis) represents what you’re using to make your prediction. That’s also 
called the independent variable or the x-variable. Here, that’s SAT.

Each point in the graph represents an individual student’s GPA and SAT. In a real 
scatterplot of a university student body, you’d see many more points than I show 
here. The general tendency of the set of points seems to be that high SAT scores 
are associated with high GPAs, and low SAT scores are associated with low GPAs.

FIGURE 14-1: 
SATs and GAPs in 

the Sahutsket 
University 

student body.
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I singled out one of the points. It shows a Sahutsket student with an SAT score of 
1,000 and a GPA of 2.5. I also show the average GPA to give you a sense that know-
ing the GPA-SAT relationship provides an advantage over knowing only the mean.

How do you make that advantage work for you? You start by summarizing the 
relationship between SAT and GPA. The summary is a line through the points. 
How and where do you draw the line?

I get to that in a minute. First, I have to tell you about lines in general.

Graphing a line
In the world of mathematics, a line is a way to picture a relationship between an 
independent variable (x) and a dependent variable (y). In this relationship,

y x4 2

if I supply a value for x, I can figure out the corresponding value for y. The equation 
says to take the x-value, multiply it by 2, and then add 4.

If x = 1, for example, y = 6. If x =2, y = 8. Table 14-1 shows a number of x-y pairs 
in this relationship, including the pair in which x = 0.

Figure 14-2 shows these pairs as points on a set of x-y axes, along with a line 
through the points. Each time I list an x-y pair in parentheses, the x-value is first.

TABLE 14-1	 x-y Pairs in y = 4 + 2x
x y

0 4

1 6

2 8

3 10

4 12

5 14

6 16
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As the figure shows, the points fall neatly onto the line. The line graphs the equa-
tion y = 4 + 2x. In fact, whenever you have an equation like this, where x isn’t 
squared or cubed or raised to any power higher than 1, you have what mathemati-
cians call a linear equation. (If x is raised to a higher power than 1, you connect the 
points with a curve, not a line.)

A couple of things to keep in mind about a line: You can describe a line in terms of 
how slanted it is, and where it runs into the y-axis.

The how-slanted-it-is part is called the slope. The slope tells you how much y 
changes when x changes by one unit. In the line in Figure 14-2, when x changes by 
one (from 4 to 5, for example), y changes by two (from 12 to 14).

The where-it-runs-into-the-y-axis part is called the y-intercept (or sometimes 
just the intercept). That’s the value of y when x = 0. In Figure 14-2, the y-intercept 
is 4.

You can see these numbers in the equation. The slope is the number that multi-
plies x, and the intercept is the number you add to x. In general,

y a bx

where a represents the intercept and b represents the slope.

The slope can be a positive number, a negative number, or zero. In Figure 14-2, 
the slope is positive. If the slope is negative, the line is slanted in a direction oppo-
site to what you see in Figure 14-2. A negative slope means that y decreases as x 
increases. If the slope is zero, the line is parallel to the horizontal axis. If the slope 
is zero, y doesn’t change as x changes.

FIGURE 14-2: 
The graph for  

y = 4 + 2x.
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The same applies to the intercept — it can be a positive number, a negative num-
ber, or zero. If the intercept is positive, the line cuts off the y-axis above the 
x-axis. If the intercept is negative, the line cuts off the y-axis below the x-axis. If 
the intercept is zero, it intersects with the y-axis and the x-axis, at the point 
called the origin.

And now, back to what I was originally talking about.

Regression: What a Line!
I mention earlier in this chapter that a line is the best way to summarize the rela-
tionship in the scatterplot in Figure 14-1. It’s possible to draw an infinite amount 
of straight lines through the scatterplot. Which one best summarizes the 
relationship?

Intuitively, the “best fitting” line ought to be the one that goes through the  
maximum number of points and isn’t too far away from the points it doesn’t go 
through. For statisticians, that line has a special property: If you draw that  
line through the scatterplot, then draw distances (in the vertical direction) 
between the points and the line, and then square those distances and add them up, 
the sum of the squared distances is a minimum.

Statisticians call this line the regression line, and they indicate it as

y a bx

Each y’ is a point on the line. It represents the best prediction of y for a given value 
of x.

To figure out exactly where this line is, you calculate its slope and its intercept. 
For a regression line, the slope and intercept are called regression coefficients.

The formulas for the regression coefficients are pretty straightforward. For the 
slope, the formula is

b
x x y y

x x
2

The intercept formula is

a y bx
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I illustrate with an example. To keep the numbers manageable and comprehensi-
ble, I use a small sample instead of the thousands of students you’d find in a 
scatterplot of an entire university student body. Table 14-2 shows a sample of data 
from 20 Sahutsket University students.

TABLE 14-2	 SAT Scores and GPAs for 20 Sahutsket University Students
Student SAT GPA

1 990 2.2

2 1150 3.2

3 1080 2.6

4 1100 3.3

5 1280 3.8

6 990 2.2

7 1110 3.2

8 920 2.0

9 1000 2.2

10 1200 3.6

11 1000 2.1

12 1150 2.8

13 1070 2.2

14 1120 2.1

15 1250 2.4

16 1020 2.2

17 1060 2.3

18 1550 3.9

19 1480 3.8

20 1010 2.0

Mean 1126.5 2.705

Variance 26171.32 0.46

Standard deviation 161.78 0.82
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For this set of data, the slope of the regression line is

b

990 1126 5 2 2 2 705 1150 1126 5 3 2 2 705

101

. . . . . .

... 00 1126 5 2 0 2 705

2 2 2 705 3 2 2 705 2 0 2
2 2

. . .

. . . . ... . .7705
0 00342 .

The intercept is

a y bx 2 705 0 0034 1126 5 1 1538. . . .

So the equation of the best-fitting line through these 20 points is

y x1 1538 0 0034. .

or, in terms of GPAs and SATs:

Predicted GPA SAT 1 1538 0 0034. .

Using regression for forecasting
Based on this sample and this regression line, you can take an applicant’s SAT 
score — say, 1230 — and predict the applicant’s GPA:

Predicted GPA 1 1538 0 0034 1230 3 028. . .

Without this rule, the only prediction is the mean GPA, 2.705.

Variation around the regression line
At the beginning of Chapter 5, I describe how the mean doesn’t tell the whole 
story about a set of data. You have to show how the scores vary around the mean. 
For that reason, I introduce the variance and standard deviation.

You have a similar situation here. To get the full picture of the relationship in a 
scatterplot, you have to show how the scores vary around the regression line. 
Here, I introduce the residual variance and standard error of estimate, which are 
analogous to the variance and the standard deviation.

The residual variance is sort of an average of the squared deviations of the observed 
y-values around the predicted y-values. Each deviation of a data point from a 
predicted point (y–y’) is called a residual — hence, the name. The formula is

s
y y

Nyx
2

2

2
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I say “sort of” because the denominator is N–2 rather than N. The reason for the 
–2 is beyond the scope of this discussion. As I discuss earlier, the denominator of 
a variance estimate is degrees of freedom (df), and that concept comes in handy in a 
little while.

The standard error of estimate is

s s
y y

Nyx yx
2

2

2

To show you how the residual error and the standard error of estimate play out for 
the data in the example, here’s Table 14-3. This table extends Table 14-2 by show-
ing the predicted GPA for each SAT.

TABLE 14-3	 SAT Scores, GPAs, and Predicted GPAs for 20 Sahutsket  
University Students

Student SAT GPA Predicted GPA

1 990 2.2 2.24

2 1150 3.2 2.79

3 1080 2.6 2.55

4 1100 3.3 2.61

5 1280 3.8 3.23

6 990 2.2 2.24

7 1110 3.2 2.65

8 920 2.0 2.00

9 1000 2.2 2.27

10 1200 3.6 2.96

11 1000 2.1 2.27

12 1150 2.8 2.79

13 1070 2.2 2.51

14 1120 2.1 2.68

15 1250 2.4 3.13

16 1020 2.2 2.34

17 1060 2.3 2.48
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As the table shows, sometimes the predicted GPA is pretty close, and sometimes 
it’s not. One predicted value (4.16) is impossible.

For these data, the residual variance is

s
y y

Nyx
2

2 2 2 2

2
2 2 2 24 3 2 2 79 2 0 2 31

20
. . . . ... . .

2
2 91
18

16. .

The standard error of estimate is

s syx yx
2 16 40. .

If the residual variance and the standard error of estimate are small, the regres-
sion line is a good fit to the data in the scatterplot. If the residual variance and the 
standard error of estimate are large, the regression line is a poor fit.

What’s “small”? What’s “large”? What’s a “good” fit?

Keep reading.

Testing hypotheses about regression
The regression equation you’re working with,

y a bx

summarizes a relationship in a scatterplot of a sample. The regression coefficients 
a and b are sample statistics. You can use these statistics to test hypotheses about 
population parameters, and that’s what you do in this section.

The regression line through the population that produces the sample (like the 
entire Sahutsket University student body, past and present) is the graph of an 
equation that consists of parameters rather than statistics. By convention, 

Student SAT GPA Predicted GPA

18 1550 3.9 4.16

19 1480 3.8 3.92

20 1010 2.0 2.31

Mean 1126.5 2.705

Variance 26171.32 0.46

Standard Deviation 161.78 0.82
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remember, Greek letters stand for parameters, so the regression equation for the 
population is

y x

The first two Greek letters on the right are α (alpha) and β (beta), the equivalents 
of a and b. What about that last one? It looks something like the Greek equivalent 
of e. What is it doing there?

That last term is the Greek letter epsilon. It represents error in the population. In a 
way, error is an unfortunate term. It’s a catchall for “things you don’t know or 
things you have no control over.” Error is reflected in the residuals — the devia-
tions from the predictions. The more you understand about what you’re measur-
ing, the more you decrease the error.

You can’t measure the error in the relationship between SAT and GPA, but it’s 
lurking there. Someone might score low on the SAT, for example, and then go on 
to have a wonderful college career with a higher-than-predicted GPA. On a scat-
terplot, this person’s SAT-GPA point looks like an error in prediction. As you find 
out more about that person, you might discover that the person was sick on the 
day of the SAT, and that explains the “error.”

You can test hypotheses about α, β, and ε, and that’s what you do in the upcoming 
subsections.

Testing the fit
You begin with a test of how well the regression line fits the scatterplot. This is a 
test of ε, the error in the relationship.

The objective is to decide whether the line really does represent a relationship 
between the variables. It’s possible that what looks like a relationship is just due 
to chance and the equation of the regression line doesn’t mean anything (because 
the amount of error is overwhelming) — or it’s possible that the variables are 
strongly related.

These possibilities are testable, and you set up hypotheses to test them:

H0: No real relationship

H1: Not H0

Although those hypotheses make nice light reading, they don’t set up a statistical 
test. To set up the test, you have to consider the variances. To consider the vari-
ances, you start with the deviations. Figure  14-3 focuses on one point in a 
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scatterplot and its deviation from the regression line (the residual) and from the 
mean of the y-variable. It also shows the deviation between the regression line 
and the mean.

y y y y y y

As the figure shows, the distance between the point and the regression line and 
the distance between the regression line and the mean add up to the distance 
between the point and the mean:

This sets the stage for some other important relationships.

Start by squaring each deviation. That gives you y y
2
, y y

2
, and y y

2
. If 

you add up each of the squared deviations, you have

y y
2

You just saw this one. That’s the numerator for the residual variance. It represents 
the variability around the regression line — the “error” I mention earlier. In the 
terminology of Chapter 12, the numerator of a variance is called a Sum of Squares, 
or SS. So, this is SSResidual.

y y
2

This one is new. The deviation y y  represents the gain in prediction due to 
using the regression line rather than the mean. The sum reflects this gain and is 
called SSRegression.

FIGURE 14-3: 
The deviations in 

a scatterplot.
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How about the next one —

y y
2

I show you this one in Chapter 5 — although I use x rather than y. That’s the 
numerator of the variance of y. In Chapter 12 terms, it’s the numerator of total 
variance. This one is SSTotal.

This relationship holds among these three sums:

SS SS SSRegression TotalResidual

Each one is associated with a value for degrees of freedom — the denominator of 
a variance estimate. As I point out in the preceding section, the denominator for 
SSResidual is N–2. The df for SSTotal is N–1. (See Chapters 5 and 12.) As with the SS, 
the degrees of freedom add up:

df df dfRegression TotalResidual

This leaves one degree of freedom for Regression.

Where is this all headed, and what does it have to do with hypothesis testing? 
Well, since you asked, you get variance estimates by dividing SS by df. Each vari-
ance estimate is called a mean square, abbreviated MS (again, see Chapter 12):

MS
SS
dfRegression

Regression

Regression

MS SS
dfResidual

Residual

Residual

MS SS
dfTotal

Total

Total

Now for the hypothesis part. If H0 is true and what looks like a relationship 
between x and y is really no big deal, the piece that represents the gain in predic-
tion because of the regression line (MSRegression) should be no greater than the vari-
ability around the regression line (MSResidual). If H0 is not true, and the gain in 
prediction is substantial, then MSRegression should be a lot bigger than MSResidual.

So the hypotheses now set up as

H0: σ
2

Regression ≤ σ2
Residual

H1: σ
2

Regression > σ2
Residual

These are hypotheses you can test. How? To test a hypothesis about two variances, 
you use an F-test. (See Chapter 11.) The test statistic here is
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F
MS
MS

Regression

Residual

To show you how it all works, I apply the formulas to the Sahutsket example. The 
MSResidual is the same as syx

2 from the preceding section, and that value is 0.16. The 
MSRegression is

MSRegression

2 24 2 705 2 79 2 705 2 31 2 705
2 2 2

. . . . ... . .
11

5 83.

This sets up the F:

F
MS
MS

Regression

Residual

5 83
0 16

36 03.
.

.

With 1 and 18 df and α = .05, the critical value of F is 4.41. (You can use the work-
sheet function F.INV.RT to verify.) The calculated F is greater than the critical F, 
so the decision is to reject H0. That means the regression line provides a good fit 
to the data in the sample.

Testing the slope
Another question that arises in linear regression is whether the slope of the 
regression line is significantly different from zero. If it’s not, the mean is just as 
good a predictor as the regression line.

The hypotheses for this test are

H0: β ≤ 0

H1: β > 0

The statistical test is t, which I discuss in Chapters 9, 10, and 11 in connection with 
means. The t-test for the slope is

t b
sb

with df = N–2. The denominator estimates the standard error of the slope. This 
term sounds more complicated than it is. The formula is

s
s

s N
b

yx

x 1
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where sx is the standard deviation of the x-variable. For the data in the example

s
s

s N
b

yx

x 1
0 402

161 776 20 1
00057.

.
.

t b
sb

.
.

.0034 0
00057

5 96

the actual value is 6.00. If you round syx and sb to a manageable number of decimal 
places before calculating, you end up with 5.96. Either way, this is larger than the 
critical value of t for 18 df and α = .05 (2.10), so the decision is to reject H0. This 
example, by the way, shows why it’s important to test hypotheses. The slope, 
0.0034, looks like a very small number. (Possibly because it’s a very small num-
ber.) Still, it’s big enough to reject H0 in this case.

Testing the intercept
For completeness, I include the hypothesis test for the intercept. I doubt you’ll 
have much use for it, but it appears in the output of some of Excel’s regression 
related capabilities. I want you to understand all aspects of that output (which I 
tell you about in a little while), so here it is.

The hypotheses are

H0: α = 0

H1: α ≠ 0

The test, once again, is a t-test. The formula is

t a
sa

The denominator is the estimate of the standard error of the intercept. Without 
going into detail, the formula for sa is

s s
N

x
N sa yx

x

1
1

2

2

where x 2 is the squared mean of the x-variable and sx
2 is the variance of the 

x-variable. Applying this formula to the data in the example,

s s
N

x
N sa yx

x

1
1

0 649
2

2 .

The t-test is

t a
sa

1 15
0 649

1 78.
.

.
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With 18 degrees of freedom, and the probability of a Type I error at .05, the critical 
t is 2.45 for a two-tailed test. It’s a two-tailed test because H1 is that the intercept 
doesn’t equal zero — it doesn’t specify whether the intercept is greater than zero 
or less than zero. Because the calculated value isn’t more negative than the nega-
tive critical value, the decision is to not reject H0.

Worksheet Functions for Regression
Excel is a big help for computation intensive work like linear regression. An 
assortment of functions and data analysis tools makes life a lot easier. In this  
section, I concentrate on the worksheet functions and on two array functions.

Figure 14-4 shows the data I use to illustrate each function. The data are GPA and 
SAT scores for 20 students in the example I show you earlier. As the figure shows, 
the SAT scores are in C3:C22, and the GPAs are in D3:D22. The SAT is the  
x-variable and GPA is the y-variable.

To clarify what the functions do, I define names for the data arrays. I define SAT 
as the name for C3:C22, and I define GPA as the name for D3:D22. That way, I can 
use those names in the arguments for the functions. If you don’t know how to 
define a name for an array, go to Chapter 2.

FIGURE 14-4: 
Data for the 

regression-related 
worksheet 
functions.
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SLOPE, INTERCEPT, STEYX
These three functions (SLOPE, INTERCEPT, and STEYX) work the same way, so I 
give a general description and provide details as necessary for each function. Fol-
low these steps:

1. With the data entered, select a cell.

2. From the Statistical Functions menu, select a regression function to open 
its Function Arguments dialog box.

• To calculate the slope of a regression line through the data, select SLOPE.

• To calculate the intercept, select INTERCEPT.

• To calculate the standard error of estimate, select STEYX.

Figures 14-5, 14-6, and 14-7 show the Function Arguments dialog boxes for 
these three functions.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Known_y’s box, I enter the name for the cell range that holds the scores 
for the y-variable. For this example, that’s GPA (defined as the name for 
C3:C22).

In the Known_x’s box, I enter the name for the cell range that holds the scores 
for the x-variable. For this example, it’s SAT (defined as the name for D3:D22). 
After I enter this name, the answer appears in the dialog box:

• SLOPE’s answer is .00342556. (See Figure 14-5.)

• INTERCEPT’s answer is –1.153832541. (See Figure 14-6.)

• STEYX’s answer is 0.402400043. (See Figure 14-7.)

4. Click OK to put the answer into the selected cell.

FIGURE 14-5: 
The Function 

Arguments dialog 
box for SLOPE.
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FORECAST.LINEAR
FORECAST.LINEAR is a bit different from the preceding three. In addition to the 
columns for the x and y variables, for FORECAST.LINEAR, you supply a value for x, 
and the answer is a prediction based on the linear regression relationship between 
the x-variable and the y-variable.

Figure 14-8 shows the Function Arguments dialog box for FORECAST.LINEAR. In 
the X box, I entered 1290. For this SAT, the figure shows the predicted GPA is 
3.265070236.

Array function: TREND
TREND is a versatile function. You can use TREND to generate a set of predicted 
y-values for the x-values in the sample.

FIGURE 14-6: 
The Function 

Arguments dialog 
box for 

INTERCEPT.

FIGURE 14-7: 
The Function 

Arguments dialog 
box for STEYX.
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You can also supply a new set of x-values and generate a set of predicted y-values, 
based on the linear relationship in your sample. It’s like applying FORECAST 
repeatedly in one fell swoop.

In this section, I describe both uses.

Predicting y’s for the x’s in your sample
First, I use TREND to predict GPAs for the 20 students in the sample. Figure 14-9 
shows TREND set up to do this. I include the Formula bar in this screen shot so that 
you can see what the formula looks like for this use of TREND.

1. With the data entered, select a cell to start TREND’s output array.

I select E3. This step puts the predicted GPAs right next to the sample GPAs.

FIGURE 14-9: 
The Function 

Arguments dialog 
box for TREND, 

along with data. 
TREND is set up to 

predict GPAs for 
the sample SATs.

FIGURE 14-8: 
The Function 

Arguments  
dialog box for 

FORECAST 
.LINEAR.
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2. From the Statistical Functions menu, select TREND to open the Function 
Arguments dialog box for TREND.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Known_y’s box, I enter the cell range that holds the scores for the 
y-variable. For this example, that’s D3:D22.

In the Known_x’s box, enter the cell range that holds the scores for the 
x-variable. For this example, it’s C3:C22.

Why didn’t I just enter GPA and SAT, as in the previous examples? When I do 
that, and complete the next step, Excel doesn’t calculate the values. (This 
happened in Excel 2013 and in Excel 2016 as well. Do I detect a trend?)

I left the New_x’s box blank.

In the Const box, I typed TRUE (or I could leave it blank) to calculate the 
y-intercept, or I would type FALSE to set the y-intercept to zero. (I really don’t 
know why you’d enter FALSE.)

In the dialog box, the instruction for the Const box refers to b. That’s the 
y-intercept. Earlier in this chapter, I use a to represent the y-intercept, and b to 
represent the slope. No usage is standard for this.

4. Click OK to put TREND’s answers into the output array.

Figure 14-10 shows the answers in E3:E22.

FIGURE 14-10: 
The results of 

TREND: Predicted 
GPAs for the 

sample SATs.
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Predicting a new set of y’s for a new set of x’s
Here, I use TREND to predict GPAs for four new SAT scores. Figure 14-11 shows 
TREND set up for this, with the name New_SAT defined for the cell range that 
holds the new scores. The figure also shows the selected cell range for the results. 
Once again, I include the Formula bar to show you the formula for this use of the 
function.

1. With the data entered, select a cell to start TREND’s output array.

I selected G8.

2. From the Statistical Functions menu, select TREND to open the Function 
Arguments dialog box for TREND.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Known_y’s box, enter the cell range that holds the scores for the 
y-variable. For this example, that’s D3:D22.

In the Known_x’s box, enter the cell range that holds the scores for the 
x-variable. For this example, it’s C3:C22.

In the New_x’s box, enter the cell range that holds the new scores for the 
x-variable. Here, that’s F8:F11. (In 2016, a named array worked in this context. 
Now it doesn’t. Go figure.)

FIGURE 14-11: 
The Function 

Arguments dialog 
box for TREND 

along with data. 
TREND is set up to 
predict GPAs for a 

new set of SATs.
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In the Const box, the choices are to enter TRUE (or leave it blank) to calculate 
the y-intercept, or FALSE to set the y-intercept to zero. I entered TRUE. (Again, I 
really don’t know why you’d enter FALSE.)

4. Click OK to put TREND’s answers into the output array.

Figure 14-12 shows the answers in G8:G11.

Array function: LINEST
LINEST calculates statistics that describe a linear trend. This function combines 
SLOPE, INTERCEPT, and STEYX, and throws in a few extras. Figure 14-13 shows the 
Function Arguments dialog box for LINEST, along with the data and the selected 
array for the answers. Notice that it’s a five-row-by-two-column array. For lin-
ear regression, that’s what the selected array has to be. How would you know the 
exact row-column dimensions of the array if I didn’t tell you? Well  — you 
wouldn’t.

FIGURE 14-12: 
The results of 

TREND: Predicted 
GPAs for a new 

set of SATs.
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Here are the steps for using LINEST:

1. With the data entered, select a cell to start the output array for LINEST’s 
results.

I selected G7.

2. From the Statistical Functions menu, select LINEST to open the Function 
Arguments dialog box for LINEST.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Known_y’s box, I entered the cell range that holds the scores for the 
y-variable. For this example, that’s D3:D22.

In the Known_x’s box, I entered the cell range that holds the scores for the 
x-variable. For this example, it’s C3:C22. (Named arrays won’t work here, 
either.)

In the Const box, the choices are to enter TRUE (or leave it blank) to calculate 
the y-intercept, or FALSE to set the y-intercept to zero. I entered TRUE.

In the Stats box, the choices are to enter TRUE to return regression statistics in 
addition to the slope and the intercept, or FALSE (or leave it blank) to return 
just the slope and the intercept. I entered TRUE.

In the dialog box, b refers to intercept, and m-coefficient refers to slope. As I 
mention earlier, no set of symbols is standard for referring to intercept and 
slope.

4. Click OK to put LINEST’s answers into the output array.

FIGURE 14-13: 
The Function 

Arguments dialog 
box for LINEST 
along with the 

data and the 
selected cell to 

start the output 
array.
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Figure 14-14 shows LINEST’s results. They’re not labeled in any way, so I added 
the labels for you in the worksheet. The left column gives you the slope, the stan-
dard error of the slope, something called “R Square,” F, and the SSRegression. What’s 
R Square? It’s another measure of the strength of the relationship between SAT 
and GPA in the sample. I discuss it in detail in Chapter 15.

The right column provides the intercept, standard error of the intercept, standard 
error of estimate, degrees of freedom, and SSResidual.

Data Analysis Tool: Regression
Excel’s Regression data analysis tool does everything LINEST does (and more) and 
labels the output for you, too. Figure 14-15 shows the Regression tool’s dialog box, 
along with the data for the SAT-GPA example.

Here are the steps for using this tool:

1. Type the data into the worksheet and include labels for the columns.

2. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select Regression.

FIGURE 14-14: 
LINEST’s results 

in the output 
array.
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4. Click OK to open the Regression dialog box.

This dialog box is the one shown in Figure 14-15.

5. In the Input Y Range box, enter the cell range that holds the data for the 
y-variable.

For the example, the GPAs (including the label) are in $D$2:$D$22.

Note the $ signs for absolute referencing. Excel adds these when you select the 
cells in the spreadsheet.

6. In the Input X Range box, enter the cell range that holds the data for the 
x-variable.

The SATs (including the label) are in $C$2:$C$22.

7. If the cell ranges include column headings, select the Labels check box.

I included the headings in the ranges, so I selected the box.

8. The Confidence level box has 95% as a default. Click the check box next 
to Confidence level and change that value if you want a different α 
(1-Confidence level).

9. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

10. The Residuals area provides four capabilities for viewing the deviations 
between the data points and the predicted points. Check as many as  
you like.

I selected all four. I explain them when I show you the output.

FIGURE 14-15: 
The Regression 

data analysis tool 
dialog box along 

with the SAT-GPA 
data.
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11. Select the Normal Probability Plots option if you want to produce a graph 
of the percentiles of the y-variable.

I selected this one so I could show it to you in the output.

12. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with 
the results.

A word about Steps 5 and 6: Notice that I didn’t enter the names for the cell ranges 
(GPA and SAT). Instead, I entered the ranges ($D$2:$D$22 and $C$2:$C$22). 
Why? When I define a name for a cell range, I don’t include the cell that holds the 
name (for reasons I explain in Chapter 2). Following this practice, however, cre-
ates a small hurdle when you use a data analysis tool: You can’t select the Labels 
check box if the defined names aren’t in the named range. Selecting that check 
box makes the variable names show up in the output — which is a good thing. So: 
I take a pass on entering defined names, enter the cell range (including the name 
cell) instead, and then select the Labels check box.

Working with tabled output
Figure 14-16 shows the upper half of the Regression tool’s tabled output, after I 
expand the columns. The title is Summary Output. This part of the output features 
one table for the regression statistics, another for ANOVA, and one for the regres-
sion coefficients.

The first three rows of the Regression Statistics table present information related 
to R2, a measure of the strength of the SAT-GPA relationship in the sample. The 
fourth row shows the standard error of estimate, and the fifth gives the number 
of individuals in the sample.

FIGURE 14-16: 
The upper half of 

the Regression 
data analysis 
tool’s tabled 

output.
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The ANOVA table shows the results of testing

H0: σRegression ≤ σResidual

H1: σRegression > σResidual

If the value in the F-significance column is less than .05 (or whatever α level 
you’re using), reject H0. In this example, it’s less than .05.

Just below the ANOVA table is a table that gives the information on the regression 
coefficients. Excel doesn’t name it, but I refer to it as the coefficients table. The 
Coefficients column provides the values for the intercept and the slope. The slope 
is labeled with the name of the x-variable. The Standard Error column presents 
the standard error of the intercept and the standard error of the slope.

The remaining columns provide the results for the t-tests of the intercept and the 
slope. The P-Value column lets you know whether to reject H0 for each test. If the 
value is less than your α, reject H0. In this example, the decision is to reject H0 for 
the slope, but not for the intercept.

Figure 14-17 shows the lower half of the Regression tool’s tabled output.

FIGURE 14-17: 
The lower half of 

the Regression 
data analysis 
tool’s tabled 

output.
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Here, you find the Residual Output and the Probability Output. The Residual Out-
put is a table that shows the predicted value and the residual (y-y’) for each indi-
vidual in the sample. It also shows the standard residual for each observation, 
which is

standard residual residual - average residual
syx

The tabled data on residuals and standard residuals are useful for analyzing the 
variability around the regression line. You can scan these data for outliers, for 
example, and see if outliers are associated with particular values of the x-variable. 
(If they are, it might mean that something weird is going on in your sample.)

The Probability Output is a table of the percentiles in the y-variable data in the 
sample. (Yes, Percentile Output would be a better name.)

Opting for graphical output
Figures 14-18, 14-19, and 14-20 show the Regression tool’s graphical output. The 
Normal Probability Plot in Figure 14-18 is a graphical version of the Probability 
Output table. The SAT Residual Plot in Figure 14-19 shows the residuals graphed 
against the x-variable: For each SAT score in the sample, this plot shows the cor-
responding residual. Figure 14-20 shows the SAT Line Fit Plot — a look at the 
observed and the predicted y-values.

FIGURE 14-18: 
The Normal 

Probability Plot 
shows the 

percentile data 
for the y-variable.

FIGURE 14-19: 
The SAT Residual 

plot graphs the 
residuals against 

the x-variable.



330      PART 3  Drawing Conclusions from Data

If you’ve used the Regression tool in Excel 2007, you’ll notice a change in the 
Normal Probability Plot and the Line Fit Plot. In Excel 2007, they appear as col-
umn charts. You can use Excel’s graphics capabilities to easily change them to that 
format.

Juggling Many Relationships at Once: 
Multiple Regression

Linear regression is a great tool for making predictions. When you know the slope 
and the intercept of the line that relates two variables, you can take a new x-value 
and predict a new y-value. In the example I walk you through in this chapter, you 
take an SAT score and predict a GPA for a Sahutsket University student.

What if you knew more than just the SAT score for each student? What if you had 
the student’s high school (HS) average (on a 100 scale) and you could use that 
information, too? If you could combine SAT score with HS average, you might 
have a more accurate predictor than SAT score alone.

When you work with more than one independent variable, you’re in the realm of 
multiple regression. As in linear regression, you find regression coefficients for the 
best-fitting line through a scatterplot. Once again, best-fitting means that the sum 
of the squared distances from the data points to the line is a minimum.

With two independent variables, however, you can’t show a scatterplot in two 
dimensions. You need three dimensions, and that becomes difficult to draw. 
Instead, I just show you the equation of the regression line:

y a b x b x1 1 2 2

For the SAT-GPA example, that translates to

Predicted GPA a b SAT b High School Average   1 2

FIGURE 14-20: 
The SAT Line Fit 
Plot shows the 

observed y-values 
and the predicted 

y-values.
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You can test hypotheses about the overall fit, and about all three of the regression 
coefficients.

I don’t go through all the formulas for finding the coefficients, because that gets 
really complicated. Instead, I go right to the Excel capabilities.

A few things to bear in mind before I proceed:

 » You can have any number of x-variables. I just use two in the upcom-
ing example.

 » Expect the coefficient for SAT to change when you move from linear regres-
sion to multiple regression. Expect the intercept to change, too.

 » Expect the standard error of estimate to decrease from linear regression to 
multiple regression. Because multiple regression uses more information than 
linear regression, it reduces the error.

Excel Tools for Multiple Regression
The good news about Excel’s multiple regression tools is that they’re the same 
ones I tell you about for linear regression in the preceding section: You just use 
them in a slightly different way.

The bad news is . . .well . . .uh . . .even after all these editions, I still can’t think of 
any bad news!

TREND revisited
I begin with TREND. Earlier, I show you how to use this function to predict values 
based on one x-variable. Change what you enter into the dialog box, and it predicts 
values based on more than one.

Figure 14-21 shows the TREND dialog box and data for 20 students. In the data, I 
add a column for each student’s high school average. I define HS_Average as the 
name for the data in this column. The figure also shows the selected column for 
TREND’s predictions. I include the Formula bar in this screen shot so that you can 
see what the formula looks like.
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Follow these steps:

1. With the data entered, select a cell to start TREND’s output array.

I selected F3. This step puts the predicted GPAs right next to the sample GPAs.

2. From the Statistical Functions menu, select TREND to open the Function 
Arguments dialog box for TREND.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Known_y’s box, I entered the cell range that holds the scores for the 
y-variable. For this example, that’s E3:E22.

In the Known_x’s box, I entered the cell range that holds the scores for the 
x-variables. This range is C3:D22, the cells that hold the SAT scores and the high 
school averages.

I entered the ranges rather than defined names because names don’t work 
with this function.

I left the New_x’s box blank.

In the Const box, the choices are TRUE (or leave it blank) to calculate the 
y-intercept, or FALSE to set the y-intercept to zero. I entered TRUE. (I really don’t 
know why you’d enter FALSE.) A note of caution: In the dialog box, the instruc-
tion for the Const box refers to b. That’s the y-intercept. Earlier in this chapter, I 
use a to represent the y-intercept, and b to represent the slope. No particular 
usage is standard for this. Also, the dialog box makes it sound like this function 
works only for linear regression. As you’re about to see, it works for multiple 
regression, too.

FIGURE 14-21: 
The Function 

Arguments dialog 
box for TREND 

along with data. 
TREND is set up to 

predict GPAs for 
the sample SATs 
and high school 

averages.



CHAPTER 14  Regression: Linear and Multiple      333

4. Click OK to put TREND’s answers into the output array.

Figure 14-22 shows the answers in F3:F22. Note the difference between the For-
mula bar in Figure 14-21 and the one in Figure 14-22.

So, TREND predicts the values, and I haven’t even shown you how to find the coef-
ficients yet!

LINEST revisited
To find the multiple regression coefficients, I turn again to LINEST.

In Figure 14-23, you can see the data and the dialog box for LINEST, along with the 
data and the selected array for the answers. The selected array is five-rows-by-
three-columns. It’s always five rows. The number of columns is equal to the 
number of regression coefficients. For linear regression, it’s two — the slope and 
the intercept. For this case of multiple regression, it’s three.

FIGURE 14-22: 
The results of 

TREND: Predicted 
GPAs for the 

sample SATs and 
high school 

averages.
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Here are the steps for using LINEST for multiple regression with three 
coefficients:

1. With the data entered, select a cell to start LINEST’s output array.

I selected H3:J7.

2. From the Statistical Functions menu, select LINEST to open the Function 
Arguments dialog box for LINEST.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Known_y’s box, enter the column that holds the scores for the y-variable. 
For this example, that’s E3:E22, the GPAs.

In the Known_x’s box, enter the cell range that holds the scores for the 
x-variables. For this example, it’s C3:D22, the SAT scores and the high-school 
averages.

In the Const box, enter TRUE (or leave it blank) to calculate the y-intercept. 
Enter FALSE to set the y-intercept to zero. I typed TRUE.

In the Stats box, enter TRUE to return regression statistics in addition to the 
slope and the intercept, or FALSE (or leave it blank) to return just the slope and 
the intercept. I entered TRUE. The dialog box refers to the intercept as b and to 
the other coefficients as m-coefficients. I use a to represent the slope and use b 
to refer to the other coefficients. No set of symbols is standard.

4. Click OK to put LINEST’s answers into the output array.

Figure 14-24 shows LINEST’s results. They’re not labeled in any way, so I added 
the labels for you in the worksheet. I also drew a box around part of the results to 
clarify what-goes-with-what.

FIGURE 14-23: 
The Function 

Arguments dialog 
box for LINEST 
along with the 

data and the 
selected cell to 

start the output 
array.
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The entries that stand out are the ugly #N/A symbols in the last three rows of the 
rightmost column in the output array. These indicate that LINEST doesn’t put 
anything into these cells.

The top two rows of the output array provide the values and standard errors for 
the coefficients. I drew the box around those rows to separate them from the three 
remaining rows, which present information in a different way. Before I get to 
those rows, I’ll just tell you that the top row gives you the information for writing 
the regression equation:

y a x x’ . .0025 0431 2

In terms of SAT, GPA, and high school average, it’s

Predicted GPA SAT High School Average   3 67 0025 043. . .

The third row has R Square (a measure of the strength of the relationship between 
GPA and the other two variables, which I cover in Chapter 15) and the standard 
error of estimate. Compare the standard error of estimate for the multiple regres-
sion with the standard error for the linear regression, and you see that the mul-
tiple one is smaller. (Never mind. I’ll do it for you: It’s .40 for the linear and 0.35 
for the multiple.)

The fourth row shows the F-ratio that tests the hypothesis about whether or not 
the line is a good fit to the scatterplot, and the df for the denominator of the F. The 
df for the numerator (not shown) is the number of coefficients minus 1. You can 
use F.INV.RT to verify that this F with df = 2 and 17 is significant.

The last row gives you SSRegression and SSResidual.

FIGURE 14-24: 
LINEST’s multiple 
regression results 

in the output 
array.
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Regression data analysis tool revisited
To use the Regression data analysis tool for multiple regression, you trot out the 
same technique you’d use with TREND and LINEST: Specify the appropriate array 
for the x-variables, and you’re off and running.

Here are the steps:

1. Type the data into the worksheet and include labels for the columns.

2. Choose Data | Data Analysis to open the Data Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select Regression.

4. Click OK to open the Regression dialog box.

This dialog box is the one shown back in Figure 14-15.

5. In the Input Y Range box, enter the cell range that holds the data for the 
y-variable.

The GPAs (including the label) are in $E$2:$E$22. Note the $ signs for absolute 
referencing. Excel adds them when you select the cell range in the worksheet.

6. In the Input X Range box, enter the cell range that holds the data for the 
x-variable.

The SATs and the high school averages (including the labels) are in 
$C$2:$D$22.

7. If the cell ranges include column headings, select the Labels check box.

I included the labels in the ranges, so I selected the box.

8. The Confidence level box has 95% as a default. Click the check box next 
to Confidence level and change that value if you want a different α 
(1-Confidence level).

In the Output Options area, select a radio button to indicate where you want 
the results.

9. I selected New Worksheet Ply to put the results on a new worksheet in 
the workbook.

10. The Residuals area provides four capabilities for viewing the deviations 
between the data points and the predicted points. Select as many as you 
like.

I selected all four.
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11. The Normal Probability Plots option in the Normal Probability area 
produces a graph of the percentiles of the y-variable.

I selected this option.

12. Click OK.

See the earlier section “Data Analysis Tool: Regression” for the details of what’s 
in the output. It’s the same as earlier, with a couple of changes and additions 
because of the new variable. Figure  14-25 shows the Regression Statistics, the 
ANOVA table, and the Coefficients table.

The ANOVA table shows the new df (2, 17, and 19 for Regression, Residual, and 
Total, respectively). The Coefficients table adds information for the HS Average. It 
shows the values of all the coefficients, as well as standard errors and t-test infor-
mation for hypothesis testing.

If you go through the example, you see the Residuals table in the output. Compare 
the absolute values of the residuals from the linear regression with the absolute 
values of the residuals from the multiple regression; you see that the multiple 
ones are smaller, on average.

The graphical output has some additions, too — a scatterplot of HS Average and 
GPA that also shows predicted GPAs, and a plot of residuals and HS Average.

FIGURE 14-25: 
Part of the output 

from the 
Regression data 

analysis tool: 
Regression 

Statistics, ANOVA 
table, and 

Coefficients table.
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Regression Analysis on the iPad
In terms of Excel array formulas, regression analysis on the iPad is (in my opin-
ion, anyway) a little smoother than in Windows or Mac. iPad Excel has no dialog 
boxes or formula builders, and it requires no keystroke combinations to populate 
an array.

Figure  14-26, for example, is the iPad equivalent of Figure  14-13. Both figures 
illustrate LINEST. For the iPad display in Figure 14-26, the next step is to just tap 
Return. The result is the same as in Figure 14-14.

The StatPlus add-in’s Multiple Linear Regression tool gives you something like 
the Toolpak’s Regression tool output. For this example, I use the data from 
Figure 14-21.

1. Enter your data into an array.

It’s a good idea to name the tab of the worksheet the array is on. For the data 
in Figure 14-14, I’ve named the worksheet tab Multiple Regression.

2. Tap Insert | Add-Ins | StatPlus to open the Add-Ins box.

If you’ve used StatPlus recently, its icon appears immediately under Recently 
Used Add-Ins. If not, find it in My Add-Ins. Tapping StatPlus opens the StatPlus 
pane on the right side of the screen.

FIGURE 14-26: 
Using LINEST 

the iPad way. 
(Compare with 

Figure 14-13.)



CHAPTER 14  Regression: Linear and Multiple      339

3. In the StatPlus pane, tap New Analysis to open the Commands box.

4. Select an analysis tool.

The Commands box is organized into categories. I tap the Regression category 
and then tap Multiple Linear Regression (the only option available in the Free 
version of StatPlus).

5. Enter the values into the boxes on the StatPlus panel:

In the drop-down menu for the Columns For box, select the name of the 
worksheet where the data lives. If that worksheet is active, its name already 
appears in the Columns For box.

In the Headers box, you can choose either Name in First Row or No Headers.  
I stick with the default, Name in First Row.

Tap the screen and select the ranges for the variables.

For the dependent variable, that’s E2:E22. Then tap the little three-cells- 
and-a-plus-sign icon to open the Variables panel. Tap Add to return to the 
Multiple Linear Regression panel, which now shows the range inside the 
Dependent box.

Repeat that sequence for the independent variable (C2:D22 — remember that 
you’re adding two independent variables).

Figure 14-27 shows the completed Multiple Linear Regression panel.

6. Tap Run.

StatPlus opens a new worksheet with the results. (See Figure 14-28.)

FIGURE 14-27: 
The completed 

StatPlus Multiple 
Linear Regression 

panel.
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FIGURE 14-28: 
The StatPlus 

Multiple Linear 
Regression 

output.
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Chapter 15
Correlation: The Rise and 
Fall of Relationships

In Chapter 14, I show you the ins and outs of regression, a tool for summarizing 
relationships between (and among) variables. In this chapter, I introduce you to 
the ups and downs of correlation, another tool for looking at relationships.

I use the example of SAT scores and GPA from Chapter 14, and I show how to think 
about the data in a slightly different way. The new concepts connect to what I 
show you in the preceding chapter, and you’ll see how that works. I also show you 
how to test hypotheses about relationships and how to use Excel functions and 
data analysis tools for correlation.

Scatterplots Again
A scatterplot is a graphical way of showing a relationship between two variables. 
Figure 15-1 is a scatterplot that represents the GPAs and SAT scores of 20 students 
at the fictional Sahutsket University. The GPAs are on a 4.0 scale and the SATs are 
total SAT scores.

IN THIS CHAPTER

 » Understanding what correlation is all 
about

 » Connecting correlation and 
regression

 » Drawing conclusions from 
correlations

 » Analyzing items

 » Correlation on the iPad
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Each point represents one student. A point’s location in the horizontal direction 
represents the student’s SAT. That same point’s location in the vertical direction 
represents the student’s GPA.

Understanding Correlation
In Chapter 14, I refer to the SAT as the independent variable and to the GPA as the 
dependent variable. The objective in Chapter 14 is to use SAT to predict GPA. Here’s 
a very important point: Although I use scores on one variable to predict scores on 
the other, I do not mean that the score on one variable causes a score on the other. 
Relationship doesn’t necessarily mean causality.

Correlation is a statistical way of looking at a relationship. When two things are 
correlated, it means that they vary together. Positive correlation means that high 
scores on one are associated with high scores on the other, and that low scores on 
one are associated with low scores on the other. The scatterplot in Figure 15-1 is 
an example of positive correlation.

Negative correlation, on the other hand, means that high scores on the first thing 
are associated with low scores on the second. Negative correlation also means that 
low scores on the first are associated with high scores on the second. An example 
is the correlation between body weight and the time spent on a weight loss 

FIGURE 15-1: 
A scatterplot of 

20 students’ SATs 
and GPAs at 

Sahutsket 
University.
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program. If the program is effective, the higher the amount of time spent on the 
program, the lower the body weight. Also, the lower the amount of time spent on 
the program, the higher the body weight.

Table 15-1, a repeat of Table 14-2, shows the data from the scatterplot.

TABLE 15-1	 SAT Scores and GPAs for 20 Sahutsket University Students
Student SAT GPA

1 990 2.2

2 1150 3.2

3 1080 2.6

4 1100 3.3

5 1280 3.8

6 990 2.2

7 1110 3.2

8 920 2.0

9 1000 2.2

10 1200 3.6

11 1000 2.1

12 1150 2.8

13 1070 2.2

14 1120 2.1

15 1250 2.4

16 1020 2.2

17 1060 2.3

18 1550 3.9

19 1480 3.8

20 1010 2.0

Mean 1126.5 2.705

Variance 26171.32 0.46

Standard Deviation 161.78 0.82
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In keeping with the way I use SAT and GPA in Chapter 14, SAT is the x-variable and 
GPA is the y-variable.

The formula for calculating the correlation between the two is

r N
x x y y

s sx y

1
1

The term on the left, r, is called the correlation coefficient. It’s also called Pearson’s 
product-moment correlation coefficient, after its creator, Karl Pearson.

The two terms in the denominator on the right are the standard deviation of the 
x-variable and the standard deviation of the y-variable. The term in the numera-
tor is called the covariance. So, another way to write this formula is

r
x y

s sx y

cov ,

The covariance represents x and y varying together. Dividing the covariance by the 
product of the two standard deviations imposes some limits. The lower limit of the 
correlation coefficient is –1.00, and the upper limit is +1.00.

A correlation coefficient of –1.00 represents perfect negative correlation (low 
x-scores associated with high y-scores, and high x-scores associated with  
low y-scores). A correlation of +1.00 represents perfect positive correlation (low 
x-scores associated with low y-scores, and high x-scores associated with high 
y-scores). A correlation of 0.00 means that the two variables are not related.

Applying the formula to the data in Table 15-1,

r N
x x y y

s sx y

1
1

1
20 1

990 1126 5 2 2 2 7. . . 005 1010 1126 5 2 0 2 705

161 78 0 82
817

... . . .

. .
.

What, exactly, does this number mean? I’m about to tell you.
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Correlation and Regression
Figure  15-2 shows the scatterplot with the line that “best fits” the points. It’s 
possible to draw an infinite number of lines through these points. Which one is 
best?

To be “best,” a line has to meet a specific standard: If you draw the distances in 
the vertical direction between the points and the line, and you square those dis-
tances, and then you add those squared distances, the best-fitting line is the one 
that makes the sum of those squared distances as small as possible. This line is 
called the regression line.

The regression line’s purpose in life is to enable you to make predictions. As I 
mention in Chapter 14, without a regression line, your best predicted value of the 
y-variable is the mean of the y’s. A regression line takes the x-variable into 
account and delivers a more precise prediction. Each point on the regression line 
represents a predicted value for y. In the symbology of regression, each predicted 
value is a y’.

Why do I tell you all this? Because correlation is closely related to regression.  
Figure  15-3 focuses on one point in the scatterplot and on its distance to the 
regression line and to the mean. (This is a repeat of Figure 14-3.)

FIGURE 15-2: 
Scatterplot of the 

20 students, 
including the 

regression line.
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Notice the three distances laid out in the figure. The distance labeled (y-y’) is the 
difference between the point and the regression line’s prediction for where the 
point should be. (In Chapter 14, I call that a residual.) The distance labeled ( )y y  
is the difference between the point and the mean of the y’s. The distance labeled 
( )y y  is the gain in prediction capability that you get from using the regression 
line to predict the point instead of using the mean to predict the point.

Figure 15-3 shows the three distances are related like this:

y y y y y y

As I point out in Chapter 14, you can square all the residuals and add them, square 
all the deviations of the predicted points from the mean and add them, and square 
all the deviations of the actual points from the mean and add them, too.

It turns out that these sums of squares are related in the same way as the devia-
tions I just showed you:

SS SS  SSResidual Regression Total

If SSRegression is large in comparison to SSResidual, it indicates that the relationship 
between the x-variable and the y-variable is a strong one. It means that through-
out the scatterplot, the variability around the regression line is small.

On the other hand, if SSRegression is small in comparison to SSResidual, it means that 
the relationship between the x-variable and the y-variable is weak. In this case, 
the variability around the regression line is large throughout the scatterplot.

FIGURE 15-3: 
One point in the 

scatterplot and its 
associated 
distances.
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One way to test SSRegression against SSResidual is to divide each by its degrees of free-
dom (1 for SSRegression and N–2 for SSResidual) to form variance estimates (also known 
as mean squares, or MS), and then divide one by the other to calculate an F. If 
MSRegression is significantly larger than MSResidual, you have evidence that the x-y 
relationship is strong. (See Chapter 14 for details.)

Here’s the clincher, as far as correlation is concerned: Another way to assess the 
size of SSRegression is to compare it with SSTotal. Divide the first by the second. If the 
ratio is large, this tells you the x-y relationship is strong. This ratio has a name. 
It’s called the coefficient of determination. Its symbol is r2. Take the square root of 
this coefficient, and you have — ta-da! — the correlation coefficient.

r r 2 SS
SS

Regression

Total

The plus-or-minus sign (±) means that r is either the positive or negative square 
root, depending on whether the slope of the regression line is positive or 
negative.

So, if you calculate a correlation coefficient and you quickly want to know what its 
value signifies, just square it. The answer — the coefficient of determination — 
lets you know the proportion of the SSTotal that’s tied up in the relationship between 
the x-variable and the y-variable. If it’s a large proportion, the correlation coef-
ficient signifies a strong relationship. If it’s a small proportion, the correlation 
coefficient signifies a weak relationship.

In the GPA-SAT example, the correlation coefficient is .817. The coefficient of 
determination is

r 2 2
817 667. .

In this sample of 20 students, the SSRegression is 66.7 percent of the SSTotal. Sounds 
like a large proportion, but what’s large? What’s small? These questions scream 
out for hypothesis tests.

Testing Hypotheses about Correlation
In this section, I show you how to answer important questions about correlation. 
As with any other kind of hypothesis testing, the idea is to use sample statistics to 
make inferences about population parameters. Here, the sample statistic is r, the 
correlation coefficient. By convention, the population parameter isρ (rho), the 
Greek equivalent of r. (Yes, it does look like the letter p, but it really is the Greek 
equivalent of r.)
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Two kinds of questions are important in connection with correlation: (1) Is a cor-
relation coefficient greater than zero? (2) Are two correlation coefficients differ-
ent from one another?

Is a correlation coefficient greater than 
zero?
Returning once again to the Sahutsket SAT-GPA example. You can use the sample 
r to test hypotheses about the population ρ — the correlation coefficient for all 
students at Sahutsket University.

Assuming you know in advance (before you gather any sample data) that any cor-
relation between SAT and GPA should be positive, the hypotheses are

H0: ρ ≤ 0

H1: ρ > 0

I set α = .05

The appropriate statistical test is a t-test. The formula is

t r
sr

This test has N–2 df.

For the example, the values in the numerator are set: r is .817 and ρ (in H0) is zero. 
What about the denominator? I don’t burden you with the details. I just tell you 
that it’s

1
2

2r
N

With a little algebra, the formula for the t-test simplifies to

t r N
r

2
1 2

For the example,

t r N
r

2
1

817 20 2
1 817

6 011
2 2

.
.

.
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With df = 18 and α = .05 (one-tailed), the critical value of t is 2.10 (use the work-
sheet function TINV to check). Because the calculated value is greater than the 
critical value, the decision is to reject H0.

Do two correlation coefficients differ?
In a sample of 24 students at Farshimmelt College, the correlation between SAT 
and GPA is .752. Is this different from the correlation (.817) at Sahutsket Univer-
sity? If you have no way of assuming that one correlation should be higher than 
the other, the hypotheses are

H0: ρSahusket = ρFarshimmelt

H1: ρSahusket ≠ ρFarshimmelt

Again, α = .05.

For highly technical reasons, you can’t set up a t-test for this one. In fact, you 
can’t even work with .817 and .752, the two correlation coefficients.

Instead, what you do is transform each correlation coefficient into something else 
and then work with the two “something elses” in a formula that gives you — 
believe it or not — a z-test.

The transformation is called Fisher’s r to z transformation. Fisher is the statistician 
who’s remembered as the F in F-test. He transforms the r into a z by doing this:

z r rr e e
1
2

1 1log log

If you know what loge means, fine. If not, don’t worry about it. (I explain it in 
Chapter 23, under its other name, ln.) Excel takes care of all this for you, as you 
see in a moment.

Anyway, for this example

z

z

e e

e

.

.

log . log . .

log

817

752

1
2

1 817 1 817 1 1477

1
2

1 .. log . .752 1 752 0 9775e

after you transform r to z, the formula is

Z z z
z z

1 2

1 2
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The denominator turns out to be easier than you might think. It is

z z N N1 2

1
3

1
31 2

For this example:

z z N N1 2

1
3

1
3

1
20 3

1
20 3

326
1 2

.

The whole formula is

Z z z
z z

1 2

1 2

1 1477 0 9775
326

522. .
.

.

The next step is to compare the calculated value to a standard normal distribution. 
For a two-tailed test with α = .05, the critical values in a standard normal distri-
bution are 1.96 in the upper tail and –1.96 in the lower tail. The calculated value 
falls between those two, so the decision is to not reject H0.

Worksheet Functions for Correlation
Excel provides two worksheet functions for calculating correlation — and they do 
exactly the same thing in exactly the same way! Why Excel offers both CORREL and 
PEARSON I do not know, but there you have it. Those are the two main correlation 
functions.

The others are RSQ, COVARIANCE.P, and COVARIANCE.S. RSQ calculates the coeffi-
cient of determination (the square of the correlation coefficient). COVARIANCE.P 
determines covariance the way I show you in the earlier section “Understanding 
Correlation.” It uses N–1. COVARIANCE.S uses N.

CORREL and PEARSON
Figure 15-4 shows the data for the Sahutsket SAT-GPA example, along with the 
Function Arguments dialog box for CORREL.

To use this function, follow these steps:

1. Type the data into cell arrays and select a cell for CORREL’s answer.

I’ve entered the SAT data into C3:C22 and the GPA data into D3:D22, and 
selected F15 to hold CORREL’s answer. I’ve defined SAT as the name of C3:C22 
and GPA as the name of D3:D22. (Read Chapter 2 to see how to do this.)
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2. From the Statistical Functions menu, select CORREL to open its Function 
Arguments dialog box.

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Array1 box, I entered SAT — the name I assigned to the cell range 
(C3:C22) that holds the scores for one of the variables.

In the Array2 box, I entered GPA — the name I assigned to the cell range 
(D3:D22) that holds the scores for the other variable.

With values entered for each argument, the answer, 0.81662505, appears in 
the dialog box.

4. Click OK to put the answer into the selected cell.

Selecting PEARSON in Step 2 instead of CORREL gives you exactly the same 
answer, and you use it exactly the same way.

RSQ
If you have to quickly calculate the coefficient of determination (r2), RSQ is the 
function for you. I see no particular need for this function because it’s easy enough 
to use CORREL and then square the answer.

Here’s what the Excel Formula bar looks like after you fill in the RSQ Function 
Arguments dialog box for this example:

=RSQ(GPA,SAT)

FIGURE 15-4: 
The Function 

Arguments dialog 
box for CORREL 
along with data.
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In terms of the dialog box, the only difference between this one and CORREL (and 
PEARSON) is that the boxes you fill in are called Known_y’s and Known_x’s rather 
than Array1 and Array2.

COVARIANCE.P and COVARIANCE.S
As far as calculating correlations go, I see no need for these formulas. Just for 
completeness, I’ll tell you that COVARIANCE.P calculates covariance like this:

covariance 1
1N

x x y y

and that COVARIANCE.S calculates covariance like this:

covariance 1
N

x x y y

ITEM ANALYSIS: A USEFUL APPLICATION OF 
CORRELATION
Instructors often want to know how performance on a particular exam question is 
related to overall performance on the exam. Ideally, someone who knows the material 
answers the question correctly; someone who doesn’t answers it incorrectly. If everyone 
answers it correctly — or if no one does — it’s a useless question. This evaluation is 
called item analysis.

Suppose it’s possible to answer the exam question either correctly or incorrectly, and it’s 
possible to score from 0 to 100 on the exam. Arbitrarily, you can assign a score of 0 for 
an incorrect answer to the question, and 1 for a correct answer, and then calculate a 
correlation coefficient where each pair of scores is either 0 or 1 for the question and a 
number from 0 to 100 for the exam. The score on the exam question is called a dichoto-
mous variable, and this type of correlation is called point biserial correlation.

If the point biserial correlation is high for an exam question, it’s a good idea to retain 
that question. If the correlation is low, the question probably serves no purpose.

Because one of the variables can only be0 or 1, the formula for the biserial correlation 
coefficient is a bit different from the formula for the regular correlation coefficient. If 
you use Excel for the calculations, however, that doesn’t matter. Just use CORREL (or 
PEARSON) in the way I outline.
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The P in the first function tells you that it’s calculating the covariance for a popu-
lation, and the S in the second tells you that it’s calculating the covariance for a 
sample (or more correctly, for estimating covariance in a population).

You use these functions the same way you use CORREL. After you fill in the Func-
tion Arguments dialog box for COVARIANCE.P for this example, the formula on the 
Formula bar is

=COVARIANCE.P(SAT,GPA)

If you want to use this function to calculate r, you divide the answer by the product 
of STDEV.P(SAT) and STDEV.P(GPA). I leave it to you to figure out how you’d use 
COVARIANCE.S to calculate r. I don’t know why you’d bother with all this when you 
can just use CORREL.

Data Analysis Tool: Correlation
If you have to calculate a single correlation coefficient, you find that Excel’s Cor-
relation data analysis tool does the same thing CORREL does, although the output 
is in tabular form. This tool becomes useful when you have to calculate multiple 
correlations on a set of data.

For example, Figure  15-5 shows SAT, high school average, and GPA for 20 
Sahutsket University students, along with the dialog box for the Correlation data 
analysis tool.

FIGURE 15-5: 
The Correlation 

data analysis tool 
dialog box along 

with data for SAT, 
High School 

Average, 
and GPA.
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Here are the steps for using this tool:

1. Type the data into the worksheet and include labels for the columns.

In this example, the data (including labels) are in C2:E22.

2. Choose Data | Data Analysis to open the Data Analysis dialog box.

3. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select Correlation.

4. Click OK to open the Correlation dialog box.

Refer to Figure 15-5.

5. In the Input Range box, enter the cell range that holds all the data.

I entered $C$2:$E$22. Note the $ signs for absolute referencing. Excel adds 
them when you select the cell range in the spreadsheet.

6. To the right of Grouped By, select a radio button to indicate whether the 
data are organized in columns or rows.

I clicked the Columns radio button.

7. If the cell ranges include column headings, select the Labels check box.

I included the headings in the ranges, so I selected the box.

8. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

9. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with 
the results.

Tabled output
Figure 15-6 shows the tool’s tabled output, after I expand the columns. The table 
is a correlation matrix.

FIGURE 15-6: 
The Correlation 

data analysis 
tool’s tabled 

output.
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Each cell in the matrix represents the correlation of the variable in the row with 
the variable in the column. Cell B3 presents the correlation of SAT with High 
School Average, for example. Each cell in the main diagonal contains 1. This is 
because each main diagonal cell represents the correlation of a variable with itself.

It’s necessary to fill in only half the matrix. The cells above the main diagonal 
would contain the same values as the cells below the main diagonal.

What does this table tell you, exactly? Read on.

Multiple correlation
The correlation coefficients in this matrix combine to produce a multiple correla-
tion coefficient. This is a number that summarizes the relationship between the 
dependent variable — GPA, in this example — and the two independent variables 
(SAT and High School Average).

To show you how these correlation coefficients combine, I abbreviate GPA as G, 
SAT as S, and High School Average as H. So rGS is the correlation coefficient for GPA 
and SAT, rGH is the correlation coefficient for GPA and High School Average, and rSH 
is the correlation coefficient for SAT and High School Average.

Here’s the formula that puts them all together:

R r r r r r
rG SH

GS GH GS GH SH

SH
.

2 2

2

2
1

The uppercase R on the left indicates that this is a multiple correlation coefficient, 
as opposed to the lowercase r that indicates a correlation between two variables. 
The subscript G.SH means that the multiple correlation is between GPA and the 
combination of SAT and High School Average.

This is the calculation that produces Multiple R in the Regression Statistics section 
of the Regression data analysis tool’s results. (See Chapter 14.)

For this example,

RG SH.

. . . . .816625 714354 2 816625 714354 552527

1

2 2

..
.

552527
8755292

Because I use the same data to show you multiple regression in Chapter 14, this 
value (with some additional decimal places) is in Figure 14-25, in cell B4.
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If you square this number, you get the multiple coefficient of determination. In 
 Chapter 14, I mention R Square, and that’s what this is. It’s another item in the 
Regression Statistics that the Regression data analysis tool calculates. You also 
find it in LINEST’s results, although it’s not labeled.

For this example, that result is

RG SH. . .2 2
875529 766552

You can see this number in Figure 14-24 in cell H5 (the LINEST results). You can 
also see it in Figure 14-25, cell B5 (the Regression data analysis tool report).

Partial correlation
GPA and SAT are associated with High School Average (in the example). Each 
one’s association with High School Average might somehow hide the true correla-
tion between them.

ADJUSTING R2

Here’s some more information about R2 as it relates to Excel. In addition to R2 — or, as 
Excel likes to write it, R Square — the Regression data analysis tool calculates Adjusted R 
Square. In Figure 14-25, it’s in cell B6. Why is it necessary to adjust R Square?

In multiple regression, adding independent variables (like High School Average) some-
times makes the regression equation less accurate. The multiple coefficient of determi-
nation, R Square, doesn’t reflect this. Its denominator is SSTotal (for the dependent 
variable), and that never changes. The numerator can only increase or stay the same. So 
any decline in accuracy doesn’t result in a lower R Square.

Taking degrees of freedom into account fixes the flaw. Every time you add an indepen-
dent variable, you change the degrees of freedom and that makes all the difference. 
Just so you know, here’s the adjustment:

Adjusted R R
N

N k
 2 21 1

1
1

The k in the denominator is the number of independent variables.
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What would their correlation be if you could remove that association? Another way 
to say it is this: What would be the GPA-SAT correlation if you could hold High 
School Average constant?

One way to hold High School Average constant is to find the GPA-SAT correlation 
for a sample of students who have one High School Average — 87, for example. In 
a sample like that, the correlation of each variable with High School Average is 
zero. This usually isn’t feasible in the real world, however.

Another way is to find the partial correlation between GPA and SAT. This is a sta-
tistical way of removing each variable’s association with High School Average in 
your sample. You use the correlation coefficients in the correlation matrix to do 
this:

r r r r

r r
GS H

GS GH SH

GH SH

.
1 12 2

Once again, G stands for GPA, S for SAT, and H for High School Average. The sub-
script GS.H means that the correlation is between GPA and SAT with High School 
Average “partialled out.”

For this example,

rGS H.

. . .

. .
.

816625 714353 552527

1 714353 1 552527
2 2

5547005

Semipartial correlation
It’s also possible to remove the correlation with High School Average from just 
SAT without removing it from GPA. This is called semipartial correlation. The for-
mula for this one also uses the correlation coefficients from the correlation matrix:

r r r r

r
G S H

GS GH SH

SH
.

1 2

The subscript G(S.H) means the correlation is between GPA and SAT with High 
School Average partialled out of SAT only.

Applying this formula to the example,

rG S H.

. . .

.
.

816625 714353 552527

1 552527
315714

2

Some statistics textbooks refer to semipartial correlation as part correlation.
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Data Analysis Tool: Covariance
You use the Covariance data analysis tool in the same way you use the Correlation 
data analysis tool. I don’t go through the steps again. Instead, I just show you the 
tabled output in Figure 15-7. The data are from Figure 15-5.

The table is a covariance matrix. Each cell in the matrix shows the covariance of the 
variable in the row with the variable in the column (calculated the way 
COVARIANCE.P would do it, by using N in the formula). Cell C4 shows the covari-
ance of GPA with High School Average. The main diagonal in this matrix presents 
the variance of each variable (which is equivalent to the covariance of a variable 
with itself). In this case, the variance is what you compute if you use VARP.

Again, it’s necessary to fill only half the matrix. Cells above the main diagonal 
would hold the same values as the cells below the main diagonal.

As is the case with COVAR, I don’t see why you’d use this tool. I just include it for 
completeness.

Using Excel to Test Hypotheses  
about Correlation

Excel has no worksheet function for testing hypotheses about r. As I point out 
earlier, you perform a t-test whose formula is

t r N
r

2
1 2

With 0.817 stored in cell H12, I use this formula to calculate t:

=H12*SQRT(20-2)/SQRT(1-H12^2)

FIGURE 15-7: 
The Covariance 

data analysis 
tool’s tabled 

output for SAT, 
High School 

Average, 
and GPA.
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I then used the answer (6.011 and some additional decimal places) as input to 
TDIST (along with 18 df and 1 tail) to find that the one-tailed probability of the 
result is way less than .05.

Worksheet functions: FISHER, FISHERINV
Excel handles the rather complex transformations that enable you to test hypoth-
eses about the difference between two correlation coefficients. FISHER transforms 
r to z. FISHERINV does the reverse. Just to refresh your memory, you use the trans-
formed values in the formula

Z z z
z z

1 2

1 2

in which the denominator is

z z N N1 2

1
3

1
31 2

In the example I discuss earlier (Sahutsket versus Farshimmelt), the correlation 
coefficients were .817 and .752, and I did a two-tailed test. The first step is to 
transform each correlation. I walk you through the steps for using FISHER to 
transform .817:

1. Select a cell for FISHER’s answer.

I selected B3 for the transformed value.

2. From the Statistical Functions menu, select FISHER to open its Function 
Arguments dialog box.

The FISHER Function Arguments dialog box appears, as shown in Figure 15-8.

FIGURE 15-8: 
The FISHER 

Function 
Arguments 
dialog box.



360      PART 3  Drawing Conclusions from Data

3. In the Function Arguments dialog box, type the appropriate value for the 
argument.

In the X box, I typed .817, the correlation coefficient. The answer, 1.147728, 
appears in the dialog box.

4. Click OK to put the answer into the selected cell.

I selected B4 to store the transformation of .752. Next, I used this formula to cal-
culate Z:

=(B3-B4)/SQRT((1/(20-3))+(1/(24-3)))

Finally, I used NORM.S.INV to find the critical value of z for rejecting H0 with a 
two-tailed α of .05. Because the result of the formula (0.521633) is less than that 
critical value (1.96), the decision is to not reject H0.

Correlation Analysis on the iPad
The free version of the StatPlus add-in provides a Correlation tool that gives quite 
detailed output. Here’s how to use it for the data in Figure 15-5:

1. Enter your data into an array.

It’s a good idea to name the tab of the worksheet the array is on. For the data 
in Figure 15-5, I’ve named the worksheet tab Multiple Correlation.

2. Tap Insert | Add-Ins | StatPlus to open the Add-Ins box.

If you’ve used StatPlus recently, its icon appears immediately under Recently 
Used Add-Ins. If not, find it in My Add-Ins. Tapping StatPlus opens the StatPlus 
pane on the right side of the screen.

3. In the StatPlus pane, tap New Analysis to open the Commands box.

4. Select an Analysis Tool.

The Commands box is organized into categories. I tap the Basic category, scroll 
down, and then tap Linear Correlations.

5. Enter the values into the boxes on the StatPlus panel.

On the drop-down menu for the Columns For box, select the name of the tab 
where the data lives. If the spreadsheet is open to that tab, its name already 
appears in the Columns For box.
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In the Headers box, you can choose either Name in First Row or No Headers. I 
stick with the default, Name in First Row.

Tap the screen and select the ranges for the variables.

For the Variables box, that’s C2:E22.

Tap the little three-cells-and-a-plus icon to open the Variables panel. Tap Add 
to return to the Linear Correlations panel, which now shows the range inside 
the Variables box.

Figure 15-9 shows the completed Multiple Linear Regression panel.

6. Tap Run.

StatPlus opens a new worksheet with the results. (See Figure 15-10.)

Check the Options tab for additional information you can include in the output.

FIGURE 15-9: 
The completed 
StatPlus Linear 

Correlations 
panel.

FIGURE 15-10: 
The StatPlus 

Linear 
 Correlations 

output.
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Chapter 16
It’s About Time

In many fields (science, medicine, business), it’s often necessary to take mea-
surements over successive intervals of time. When you have this kind of data, 
you have yourself a time series. This chapter tells you about time series and how 

to use Excel to understand them and use them to make forecasts.

A Series and Its Components
Managers often have to base their decisions on time series — like sales figures — 
and the numbers in a time series typically show numerous ups and downs.

Here’s an example. The (totally fictional) FarDrate Timepiece Corporation mar-
kets the beautifully designed MeesKyte watch, and company leaders gather the 
quarterly national sales figures. Figure 16-1 shows a spreadsheet and a graph of 
these sales figures from 2016–2020.

Take a look at the graph. The peaks and valleys seem pretty regular. Sales peak in 
the last quarter of every year — perhaps people buy these watches as holiday gifts. 
Sales also peak somewhat (but not as much) in the middle of each year — maybe 
parents are buying MeesKyte watches as graduation presents. This pattern repeats 
from year to year, and it’s called the seasonal component of the time series.

IN THIS CHAPTER

 » Understanding time series

 » Moving averages

 » Smoothing things out

 » Forecasting with just one (?) click

 » Working with time series on the iPad
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You also see sales moving generally in an upward direction. That might result 
from an expanding economy, or perhaps increasing awareness of the brand (or 
both). This is called the trend component of the time series. In this example, the 
trend is linear, but that’s not always the case in a time series.

And you see the peaks and valleys varying around the upward trend. This is called 
the cyclic component of the time series.

Finally, sporadic nonrecurring influences can affect a time series. This is known 
as the irregular component of a time series.

A Moving Experience
A mean that takes all peaks and valleys into account might obscure the big picture 
of the overall trend.

One way to smooth out the bumps and still see the big picture is to calculate a 
moving average. This is an average calculated from the most recent scores in the 
time series. It moves because you keep calculating it over the time series. As you 
add a score to the front end, you delete one from the back end.

So, you have the MeesKyte sales figures for 20 quarters, and you decide to keep a 
moving average for the most recent five quarters. Start with the average from 
quarters 1–5 of those 20 quarters (March 11 through March 12). Then average the 
prices from quarters 2–6 (April 11 through April 12). Next, average quarters 3–7, 
and so on, until you average the final 5 quarters of the time series.

FIGURE 16-1: 
Quarterly sales 
figures for the 

FarDrate 
MeesKyte watch.
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A moving average is a forecast. It’s a best guess based on averaging the sales fig-
ures of the most recent five quarters.

Excel provides two ways to calculate the moving average. One is quick-and-dirty 
(it’s a trendline option on the chart), and the other is a data analysis tool.

Lining up the trend
Here’s how to use the trendline option:

1. Enter your data into a spreadsheet.

I entered the data into columns A and B, rows 1–21. Row 1 contains headings.

2. Select the data and insert a line chart.

On the Insert tab, select Line Chart with Markers. (It’s one of the options in the 
Charts area.)

3. Move the cursor into the chart to make the Chart Elements tool (the plus 
sign) visible.

4. Click the Chart Elements tool.

5. Choose Trendline | More Options from the pop-up menu that appears.

6. In the Format Trendline panel, select Moving Average and change the 
period.

I changed it to 5 for this example.

Figure 16-2 shows the Format Trendline panel and the moving average line in the 
chart. (For clarity, I reformatted the y-axis to begin at 50.) The beauty of this 
technique is that it enables you to experiment with different periods (also known 
as intervals) for the moving average and immediately see how each one looks on 
the chart. Unfortunately, this technique doesn’t show you the numerical values of 
the moving averages. To calculate those values, you use . . .

Data analysis tool: Moving Average
The Moving Average tool charts the moving average and presents the numerical 
values, too. Unlike with the trendline technique, however, you can’t experiment 
with different periods on the fly.
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Here are the steps:

1. With the data entered into the spreadsheet, choose Data | Data Analysis 
from the main menu, and then choose Moving Average from the Analysis 
Tools options.

This step opens the Moving Average dialog box.

2. In the Input Range box, enter the data array.

For this example, that’s B1 through B21. I don’t include the column with the 
dates.

3. Fill in the remaining boxes.

I select the Labels in First Row check box, and I enter 5 in the Interval box. (The 
word Interval corresponds to the word Period in the trendline technique.) Then 
I enter the cell range $C$2:$C$22 in the Output Range box and select the Chart 
Output check box and the Standard Errors check box. Figure 16-3 shows the 
Moving Average dialog box after all these entries.

FIGURE 16-3: 
The completed 

Moving Average 
dialog box.

FIGURE 16-2: 
Formatting the 

trendline to 
produce a moving 

average.
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4. Click OK.

This step puts the moving averages in column C and the standard errors in 
column D, and then creates a chart of the data and the moving averages. 
Figure 16-4 shows all this. (For the sake of clarity, I reformatted the y-axis to 
begin at 40.)

Ignore all the ugly-looking #N/A symbols. Each number in column C is a moving 
average — which, as I mention earlier in this chapter, is a forecast of the number 
of sales on the basis of the preceding five quarters.

Each number in column D is a standard error. In this context, a standard error is 
the square root of the average of the squared differences between the sales and the 
forecast for the previous five quarters. So, the first standard error in cell D10 is

63 74 4 81 79 2 73 77 110 85 4 70 79 4
5

12
2 2 2 2 2

. . . .
.998245

The graph (stretched out from its original appearance and with a reformatted 
vertical axis) shows the moving average in the series labeled Forecast. Sometimes 
the forecast matches up with the data, sometimes it doesn’t. As the figure shows, 
the moving average smooths out the peaks and the valleys in the sales data.

In general, how many scores should you include in the interval? That’s up to you. 
Include too many scores and you risk obsolete data influencing your results. 
Include too few and you risk missing something important.

The Moving Average tool doesn’t put the dates on the x-axis, but you can put them 
in the chart after it’s created. Right-click in the chart, choose Select Data from the 
contextual menu that appears, and then choose Edit the Horizontal (Category) 
Axis Labels.

FIGURE 16-4: 
The results: 

Moving averages, 
standard errors, 

and a chart.
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How to Be a Smoothie, Exponentially
Exponential smoothing is similar to a moving average. It’s a technique for forecast-
ing based on prior data. In contrast with the moving average, which works just 
with a sequence of actual values, exponential smoothing takes its previous predic-
tion into account.

Exponential smoothing operates according to a damping factor. Think of a damping 
factor as something like a car’s shock absorber: It smooths out the ride by absorb-
ing bumps along the way. (A shock absorber is also called a “damper,” inciden-
tally). Similarly, a damping factor minimizes bumps in the data, and makes it 
easier to see larger patterns.

The damping factor is a number between zero and one. With α representing the 
damping factor, the formula is

y y yt t t’ ’1 1 1

In terms of sales figures from the preceding example, y’t represents the predicted 
sales at a time: t. If t is the current quarter, t–1 is the immediately preceding  
quarter. So yt–1 is the preceding quarter’s actual sales, and y’t–1 is the preceding 
quarter’s predicted sales. The sequence of predictions begins with the first pre-
dicted value as the observed value from the immediately preceding quarter.

A larger damping factor gives more weight to the preceding quarter’s prediction. 
A smaller damping factor gives greater weight to the preceding quarter’s actual 
value. A damping factor of 0.5 weighs each one equally.

Figure  16-5 shows the dialog box for the Exponential Smoothing data analysis 
tool. It’s similar to the Moving Average tool, except for the Damping Factor box.

FIGURE 16-5: 
The Exponential 
Smoothing data 

analysis tool 
dialog box.
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I applied exponential smoothing to the data from the preceding example. I did this 
three times with 0.1, 0.5, and 0.9 as the damping factors. Figure 16-6 shows the 
graphical output for each result.

The highest damping factor, 0.9, results in the flattest sequence of forecasts. The 
lowest, 0.1, forecasts the most pronounced set of peaks and valleys. How should 
you set the damping factor? Like the interval in the moving average, that’s up to 
you. Your experience and the specific area of application are the determining 
factors.

You might have noticed from Figure 16-6, however, that the predictions of expo-
nential smoothing don’t appear to be all that accurate for this example.

What to do? Read on.

One-Click Forecasting
Excel (Windows only) has a capability that enables you to select a time series and 
with a mouse-click (several, actually) receive a set of extrapolated forecasts along 
with confidence intervals for each forecast.

FIGURE 16-6: 
Exponential 

smoothing with 
three damping 

factors.
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TRIPLING THE FUN — EXPONENTIALLY
The basis of Excel’s forecasting tool is a more complex form of exponential smoothing 
than you’ve seen so far. Think of the concept I tell you about in the previous section as 
single exponential smoothing.

When you have a trend component (like the overall upward linear trend in the exam-
ple), single exponential smoothing loses accuracy. Figure 16-6 might have suggested 
that to you.

With trend in the data, you have to add a little something extra:

y y y bt t t t’ ’1 1 1 1

and

b y y bt t t t’ ’ 1 11

In that last equation, the letter in front of the first parentheses that looks like a y is actu-
ally the Greek letter gamma. These equations add trend to the mix. This is called double 
exponential smoothing.

When the data show seasonality as well as trend (as in the FarDrate example), triple 
exponential smoothing saves the day. (It’s abbreviated as ETS, because “exponential triple 
smoothing” is another way to say it.) The three equations for triple exponential smooth-
ing are the brainchildren of statisticians Charles Holt and Peter Winters, and so it’s called 
the Holt-Winters method.

The first is an overhaul of single exponential smoothing:

y
y
I

y bt
t

t L
t t’ ’1 1

1 1

The second is one you just saw:

b y y bt t t t’ ’ 1 11

The third one is

I
y
y

It
t

t
t L’

1
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The new forecasting capability uses Excel’s FORECAST functions:

 » FORECAST.ETS creates a forecast based on triple exponential smoothing. (See 
the earlier sidebar “Tripling the fun — exponentially.”)

 » FORECAST.ETS.CONFINT returns a confidence interval for a forecast value.

 » FORECAST.ETS.STAT returns values of statistics associated with the ETS 
forecast.

 » FORECAST.ETS.SEASONALITY determines the length of the seasonal pattern 
within the data.

All these functions are available on the Mac and the iPad, too, but only Windows 
combines them into the Excel forecast sheet.

Let’s forecast!

Here are the steps:

1. Enter the data, with dates in one column.

As per the example, the data are in columns A and B.

2. Select the data.

3. On the Data tab, in the Forecast area, select Forecast Sheet.

This step opens the Create Forecast Worksheet dialog box shown in Figure 16-7. 
As you can see, Excel is already hard at work figuring things out for you. The blue 
line is the data, the bold orange line is the forecasts, and the lighter orange lines 
are the 95 percent confidence limits for the forecasts.

4. In the Create Forecast Worksheet dialog box, click the Options arrow in 
the lower left corner.

This step expands the dialog box, as Figure 16-8 shows.

The first equation is the overall smoothing, the second is the trend smoothing, and the 
third is the seasonal smoothing.

I is called the seasonal index, and L is the number of periods per season.

Each of the three coefficients — α, β, and γ — is a number between zero and one.

The mathematics behind fitting these coefficients to the data is pretty intense, but 
Excel’s forecast sheet (that one-click forecasting tool) makes them easy to work with.
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FIGURE 16-7: 
The Create 

Forecast 
Worksheet 
dialog box.

FIGURE 16-8: 
The expanded 

Create Forecast 
Worksheet 
dialog box.
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5. Make necessary modifications in the expanded dialog box.

To get an idea about forecast accuracy, I move the date in the Forecast Start 
box back to March 31, 2019. This way, I can match some of the forecasts with 
data.

The Seasonality area shows the number 2 in the grayed-out box next to Set 
Manually. This means that FORECAST.ETS.SEASONALITY has detected a 
pattern that repeats every two quarters. As the FarDrate CEO, though, I believe 
that the pattern repeats every four quarters, so I select the Set Manually radio 
button and change the number 2 to 4. The chart in the dialog box changes 
immediately to show much more accurate forecasts and narrower 95 percent 
confidence limits.

Next, I select the Include Forecast Statistics check box. I have the option of 
changing confidence intervals and some other options, but what I’ve done is 
sufficient.

6. Click Create.

This step opens the created Forecast worksheet, shown in Figure 16-9.

Along with the chart, the Forecast Worksheet shows the forecast values in  
column C (calculated by FORECAST.ETS), and the confidence limits in columns D 
and E (calculated by FORECAST.ETS.CONFINT).

The Forecast worksheet also provides the forecast statistics in columns G and H 
(courtesy of FORECAST.ETS.STAT), rows 1-8, as Figure 16-10 shows.

FIGURE 16-9: 
The created 

Forecast 
worksheet.
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Alpha, Beta, and Gamma are the values I refer to in the sidebar. The other four are 
measures of how well the forecasts fit the data. The first two are a bit involved, so 
I let them slide.

The third one, MAE, is the mean absolute error — the average of the absolute value 
of the differences between data and forecasts. The last one, RMSE, is root mean 
squared error, which is the average of the squared deviations of the data from the 
forecasts. You can think of the standard error of estimate in regression (refer to 
Chapter 14) as a root mean square error adjusted for degrees of freedom.

Working with Time Series on the iPad
iPad Excel provides the quick-and-dirty trendline way of depicting a moving 
average, and the StatPlus add-in gives you a deeper dive. I’m not sure why you’d 
want to use the trendline technique, because it only renders a moving average 
with a default-value period (2). If you want to try it for the data in Figure 16-1, 
select the data and then Insert | Recommended, and choose the first selection 
(Line) to create the chart. Tap the chart to open the Chart tab and choose Elements 
| Trendline | Moving Average.

The StatPlus add-in gives you much more. Here’s how to use it for the data in 
Figure 16-1:

1. Enter your data into an array.

Name the tab of the worksheet the array is on. For the data in Figure 16-1, I’ve 
named the worksheet tab Weighted Average.

2. Tap Insert | Add-Ins | StatPlus to open the Add-Ins box.

If you’ve used StatPlus recently, its icon appears immediately under Recently 
Used Add-Ins. If not, find it in My Add-Ins. Tapping StatPlus opens the StatPlus 
pane on the right side of the screen.

FIGURE 16-10: 
The forecast 

statistics.
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3. In the StatPlus pane, tap New Analysis to open the Commands box.

4. Select an Analysis Tool.

The Commands box is organized into categories. I tap the Time Series category 
and then tap Moving Average.

5. Enter the values into the boxes on the StatPlus pane.

Tap Options to display the Options tab and then enter a value in the Simple 
MA: Length box. I enter 5 to stay consistent with the earlier example.

Tap Variables to display the Variables tab.

On the drop-down menu for the Columns For box, select the name of the tab 
where the data lives. If the spreadsheet is open to that tab, its name already 
appears in the Columns For box.

In the Headers box, you can choose either Name in First Row or No Headers. I 
stick with the default, Name in First Row.

Tap the screen and select the range for the variable (Sales X 1000).

For the Variables box, that’s B1:B21. (Don’t include the data in column A.)

Tap the little three-cells-and-a-plus-sign icon to open the Variable pane. Tap 
Add to return to the Moving Average pane, which now shows the range inside 
the Variable box. Don’t enter anything into the Weighted MA: Weights box.

Figure 16-11 shows the completed Moving Average pane.

FIGURE 16-11: 
The completed 

StatPlus Moving 
Average pane.
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6. Tap Run.

Stat Plus opens a new worksheet with the results. As Figure 16-12 shows, the 
output closely resembles the output of the Analysis Toolpak Moving Average 
tool, along with some additional statistics.

How about exponential smoothing?

1. Enter your data into an array.

Again, I work with the worksheet tab Weighted Average.

2. Tap Insert | Add-Ins | StatPlus to open the Add-Ins box.

Tapping StatPlus opens the StatPlus pane on the right side of the screen.

3. In the StatPlus pane, tap New Analysis to open the Commands box.

4. Select an analysis tool.

The Commands box is organized into categories. I tap the Time Series category 
and then tap Exponential Smoothing (Single).

FIGURE 16-12: 
The StatPlus 

Moving Average 
output.
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5. Enter the values into the boxes on the StatPlus pane.

In the drop-down menu for the Columns For box, select the name of the tab 
where the data lives. If the spreadsheet is open to that tab, its name already 
appears in the Columns For box.

In the Headers box, you can choose either Name in First Row or No Headers. I 
stick with the default, Name in First Row.

Tap the screen and select the range for the variable (Sales X 1000).

For the Variable box, that’s B1:B21. (Don’t include the data in column A.)

Then tap the little three-cells-and-a-plus-sign icon to open the Variable pane.

Tap Add to return to the Exponential Smoothing pane, which now shows the 
range inside the Variable box. Don’t enter anything into the Weighted MA: 
Weights box.

Figure 16-13 shows the completed Exponential Smoothing pane.

6. Tap Run.

StatPlus opens a new worksheet with the results.

FIGURE 16-13: 
The completed 

StatPlus 
Exponential 

Smoothing pane.
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As Figure 16-14 shows, the output provides a chart with the Sales data and the 
smoothed values. The upper part of the output shows a value for Alpha. This is 
what I earlier referred to as the damping factor. For this example, I used the default 
value, 0,10. You can change this value: In Step 5, tap Model to display the Model 
tab, enter a different value for Alpha, and then tap Variables to display the Vari-
ables tab again.

The free version of StatPlus provides additional Time Series tools, but they’re on 
a more advanced level.

FIGURE 16-14: 
The StatPlus 
Exponential 
Smoothing 

output.
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Chapter 17
Nonparametric Statistics

The statistical methods I cover in earlier chapters have a couple of things in 
common. First, you assume ratio (or at least interval) data. (If you don’t 
know what I mean, go read the section about types of data in Chapter 1.) 

Second, you can use sample statistics to estimate parameters of the sampling dis-
tribution, and you use the central limit theorem to characterize the nature of the 
distribution so that you can test hypotheses.

Sometimes you have to analyze nominal data or ordinal data. (Again, see  Chapter 1.) 
And sometimes you can’t specify the distribution of the variable you’re  
working with.

To deal with these cases, statisticians have developed nonparametric statistical 
tests. The list of these tests is long and growing all the time. Many of them require 
special lookup tables for hypothesis tests.

I want to avoid those special tables. So, to make the cut for this chapter, a test had 
to either (a) test hypotheses via a well-known distribution built into Excel or (b) 
work with a well-known distribution when samples are large. Of the nonparamet-
ric tests that fit the bill, I chose six classical ones.

Because Excel has no special data analysis tools or built-in functions for these 
tests, the general plan is to translate the test formulas into Excel formulas and 
then use an Excel statistical function (NORM.DIST or CHISQ.DIST.RT) to perform 
the hypothesis test.

IN THIS CHAPTER

 » Introducing non-parametric statistics

 » Testing independent samples

 » Testing related samples

 » Correlating ranks
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The easiest way to tell you about each test is to show you the finished spreadsheet 
and describe the steps it takes to get there.

Independent Samples
The nonparametric tests I show you in this section are analogous to the indepen-
dent groups t-test and to the one-factor analysis of variance.

Two samples: Mann-Whitney U test
The Mann-Whitney U test is one of the best-known nonparametric tests. You use 
it to test whether two independent samples come from the same population in 
situations where you don’t have interval or ratio data (and thus can’t use the 
t-test).

When the data are ordinal, statisticians work with the ranks of the data rather 
than with the original data points, and that’s what this test does.

Imagine a study in which 40 people are randomly assigned to watch either a 
stressful movie or a cartoon. Then they have to rate how stressed they feel on a 
scale of 1 (least stressed) to 100 (most stressed).

Figure  17-1 shows a spreadsheet with the data in columns A and B.  The null 
hypothesis is that the two groups came out of the same population. The alterna-
tive hypothesis is that the stress would be higher after the stressful movie, so this 
can be a one-tailed test at α = .05.

The first order of business is to rank each score (in ascending order) in the context 
of all scores. If the null hypothesis is true, the high ranks and the low ranks (and 
all those in between) should be distributed about equally throughout the two 
groups.

I can base the formula for the Mann-Whitney U test on either the ranks in column 
A or the ranks in column B.

If I choose A, the formula is

U N N
N N

RA B
A A

A

1
2
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If I choose B, it’s

U N N
N N

RA B
B B

B

1
2

RA is the sum of the ranks in column A, RB is the sum of the ranks in column B, NA 
is the number of scores in column A, and NB is the number of scores in column B.

With large samples, the sampling distribution of U is approximately a normal 
distribution with

U
A BN N
2

and

U
A B A BN N N N 1

12

Back to Figure 17-1: The ranks for the scores in columns A and B appear in col-
umns D and E. How did I get them? Easy. In cell D2, I type

=RANK.AVG(A2,$A$2:$B$21,1)

Then I autofill columns D and E.

Now it’s a matter of translating either U-formula into an Excel formula. For clar-
ity, I defined NA as the name of the value in cell G2 (the number of scores in col-
umn A) and NB for the value in H2 (the number of scores in column B).

FIGURE 17-1: 
The Mann- 

Whitney U test.
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I choose to base the U-formula on column A, so in cell H4 I type

=NA*NB +((NA*(NA+1))/2)-E22

I press Enter, and the result, 271, appears.

Now for the test. For the mean of the sampling distribution, I type

=(NA*NB)/2

into cell H5 and

=SQRT((NA*NB*(NA+NB+1))/12)

into H6. To calculate the probability associated with U, I type

=NORM.DIST(H4,H5,H6,TRUE)

into H8. The result, 0.97, means that the probability of U being less than the cal-
culated value is greater than 0.95. So, the probability of a result more extreme is 
less than .05 and I can reject the null hypothesis.

More than two samples: Kruskal-Wallis  
one-way ANOVA
FarKlempt Robotics, Inc., surveys its employees about their level of satisfaction 
with their jobs. They ask developers, managers, maintenance workers, and tech 
writers to rate job satisfaction on a scale of 1 (least satisfied) to 100 (most satis-
fied). They then focus on six employees of each job type. Figure  17-2 shows a 
spreadsheet with the data in columns A through D, rows 1 through 7. The null 
hypothesis is that the samples all come from the same population. The alternative 
hypothesis is that they do not.

The appropriate nonparametric test is the Kruskal-Wallis one-way analysis of 
variance. As with the Mann-Whitney, I start by ranking all 24 scores in ascending 
order. Again, if the null hypothesis is true, the ranks should be distributed about 
equally throughout the groups.

The formula for this statistic is

H
N N

R
n

N12
1

3 1
2

( )
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N is the total number of scores, and n is the number of scores in each group. To 
keep things easy, I specified the same number of scores in each group, but that’s 
not necessary for this test. R is the sum of the ranks in a group. H is distributed 
approximately as chi-square with df = number of groups — 1, when each n is 
greater than 5.

Looking back at Figure 17-2, the ranks for the data are in rows 9 through 15 of 
columns A through D. Row 16 holds the sums of the ranks in each group. I defined 
N_Total as the name for the value in cell F2 (the total number of scores). I defined 
n_group as the name for the value in G2 (the number of scores in each group).

To calculate H, I type

=(12/(N_Total*(N_Total+1)))*(SUMSQ(A16:D16)/n_group)-3*(N_ 
Total+1)

into cell G6.

For the hypothesis test, I type

=CHISQ.DIST.RT(G6,3)

into G7. The result is less than .05, so I reject the null hypothesis.

Matched Samples
The nonparametric tests I show you in this main section are analogous to the 
matched groups t-test and to the repeated measures analysis of variance.

FIGURE 17-2: 
The Kruskal– 

Wallis one-way 
analysis of 

variance.
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Two samples: Wilcoxon matched-pairs 
signed ranks
This test works with the differences between matched pairs. It goes a bit further 
than that, though: In addition to the direction of the differences, the Wilcoxon test 
considers the sizes of the differences. So, this test is useful when you have ordinal 
data and enough precision that you can rank the differences between pairs.

Here’s an example. A social worker studies 26 pairs of identical twins. Each child 
in a twin-pair either attends a public school or is home schooled. At the end of a 
school year, the social worker rates all the children on sociability on a scale of 1 
(least sociable) to 100 (most sociable). The null hypothesis is that the two groups 
don’t differ. The alternative hypothesis is that they do.

Figure 17-3 shows the data in columns A and B, rows 1 through 27. The interpair 
differences are in column C, and the ranks of the differences are in column D.

Now the situation gets interesting. The next step is to see how many pairs have a 
negative difference and how many have a positive difference. If the null hypoth-
esis is true, the sum of the ranks for the positive differences should be about the 
same as the sum of the ranks for the negative differences.

FIGURE 17-3: 
The Wilcoxon 

matched-pairs 
signed ranks test.



CHAPTER 17  Nonparametric Statistics      385

You work with the less frequent category and add up its ranks. I refer to that  
sum as T. If the number of pairs, N, is larger than 25, then T is normally 
 distributed with

T

N N 1
4

and

T

N N N1 2 1
24

On the spreadsheet, I calculate the number of positive differences by typing

=COUNTIF(C2:C27,">0")

in cell G4 and the number of negative differences by typing

=COUNTIF(C2:C27,"<0")

in G5.

The results show 8 negative differences and 18 positive differences, so the next 
step is to add up the ranks of the negative differences. To do that, I type

=SUMIF(C2:C27,"<0",D2:D27)

in cell G7.

To test the hypotheses, I have to calculate the mean and the standard deviation of 
the sampling distribution. I define N as the label for cell F2, which holds the num-
ber of twin-pairs.

So, I type

=(N*(N+1))/4

into cell G9 for the mean and type

=SQRT((N*(N+1)*(2*N +1))/24)

into cell G10 for the standard deviation.
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And finally, to test the hypotheses, I type

=NORMDIST(G7,G9,G10,TRUE)

into G12. The very low value (way less than .05) indicates that I can reject the null 
hypothesis.

More than two samples: Friedman  
two-way ANOVA
With ordinal data and more than two matched samples, the Friedman two-way 
ANOVA is the appropriate nonparametric test. In this test, we rank the data within 
each sample.

Figure 17-4 shows an example. Twenty people rate their knowledge of economics, 
geography, and history on a scale of 1 (least knowledge) to 10 (most knowledge). 
The data are in columns A through D and rows 1 through 21. Think of economics, 
geography, and history as three matched samples. They’re “matched” because 
the three numbers in each row represent the data for the same person. The ranks 
within each sample are in columns F through H.

The null hypothesis is that the three different areas of knowledge yield no differ-
ences, and the alternative hypothesis is that they do. If the null hypothesis is true, 
the sums of the ranks for each area should be about the same.

FIGURE 17-4: 
The Friedman 

two-way analysis 
of variance.
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Friedman referred to the test statistic as χ r
2, so I will, too. The formula is

r Nk k
R N k2 212

1
3 1

N is the number of individuals, and k is the number of groups (economics, geog-
raphy, and history). With a large enough sample (more than 9), χ r

2 is distributed 
as chi-square with k–1 degrees of freedom.

To determine the ranks in columns F through H, I type

=RANK.AVG(B2,$B2:$D2,1)

into F2. Note the dollar sign ($) to the left of each column, but not to the left of 
each row number. This allows me to autofill all cells from F2 to H21. Then I sum 
the ranks in row 22.

For clarity in the Excel formula, I define Total_N as the label for J2 (the number 
of people in the study) and group as the label for K2 (the number of areas of 
knowledge).

To calculate χ r
2, I type

=(12/(Total_N*groups*(groups+1))*SUMSQ(F22:H22))-3*Total_ 
N*(groups+1)

into cell K7.

To test the hypotheses, I type

=CHISQ.DIST.RT(K7,groups-1)

into K8. The value is lower than .05, so I reject the null hypothesis.

More than two samples: Cochran’s Q
Wait. What? Another test for more than two samples? This one’s a different ani-
mal. The other tests in this chapter work with ordinal data. This one works with 
nominal data.

The spreadsheet in Figure  17-5 holds the data for a study of 20 people solving 
anagram problems. The anagrams are either easy (column B), of medium diffi-
culty (column C), or difficult (column D). If a person solves an anagram within 
one minute, it’s a “Success” denoted by 1. If not, it’s a “Failure”, denoted by 0.



388      PART 3  Drawing Conclusions from Data

The null hypothesis is that the three difficulty levels yield no differences. The 
alternative hypothesis is that they differ. If the null hypothesis is true, the sums 
for the three conditions (cells B22, C22, and D22) will be about equal.

The formula for this test is

Q
k k G G

k L L

1
2

2

According to longstanding usage for this test, G represents a column sum, L rep-
resents a row sum, and k is the number of conditions (three, in this example). The 
sampling distribution of Q approximates chi-square with k-1 degrees of freedom.

For clarity in the upcoming Excel formula, I define L as the name for the row sums 
in column E, G as the name for the column sums in row 22, and k as the name for 
the value in cell G2 (the number of conditions).

The formula for Q in cell H5 is thus:

=(k*(k-1)*DEVSQ(G))/(k*SUM(L)-SUMSQ(L))

Need a refresher on DEVSQ? Go to Chapter 5.

To test the hypotheses, I type

=CHISQ.DIST.RT(H5,k-1)

FIGURE 17-5: 
Cochran’s Q test.
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into cell H6. The value is lower than .05, which indicates that I should reject the 
null hypothesis.

Correlation: Spearman’s rS

Spearman’s correlation coefficient, rS, was the earliest nonparametric test based 
on ranks. For a sample of individuals each measured on two variables, the idea is 
to rank each score within its own variable. Then, for each individual, subtract one 
rank from the other. If correlation is perfect (in the positive direction), all the dif-
ferences are zero.

Figure 17-6 shows an example of what I mean. An industrial psychologist rated 
the sociability of 20 employees of the FarDrate Timepiece Corporation. The scale 
ranged from 1 (least sociable) to 100 (most sociable). Each FarDrate employee also 
rated their job satisfaction on a scale of 1 (least satisfaction) to 80 (most satisfac-
tion). The null hypothesis is that sociability isn’t correlated with job satisfaction. 
The alternative hypothesis is that these two variables are correlated.

The data are in columns B and C, and the ranks are in columns E and F. The dif-
ferences between each pair of ranks are in column G.

FIGURE 17-6: 
Spearman’s rS.
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The formula is

r
d

N NS 1
6 2

3

where d is an interpair difference. As is the case with the regular correlation coef-
ficient (see Chapter 15), if the null hypothesis is true, the value of rS should be 
around zero.

To calculate the ranks in column E, I type

=RANK.AVG(B2,$B$2:$B$21,1)

into E2 and autofill the column. For the ranks in column F, I type

=RANK.AVG(C2,$C$2:$C$21,1)

into F2 and autofill there.

I don’t have to type a complicated Excel formula into cell J4 to calculate the cor-
relation coefficient. Why? Because Excel and mathematical statistics team up for a 
swell surprise: All I have to do is type

=CORREL(E2:E21,F2:F21)

into J4. That’s all there is to it. Using CORREL on the ranks gives the same answer 
as the formula I just showed you. (So, it isn’t really necessary to calculate the 
interpair rank differences in column G.)

The hypothesis test is also familiar if you’ve read Chapter 15. Calculate

t r N

r
S

S

2

1 2

N is the number of pairs, and the test has N–2 degrees of freedom.

I define Number_of_pairs as the name for the value in cell I2. So I type

=J4*SQRT(Number_of_Pairs-2)/SQRT(1-J4^2)
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into J6 and

=T.DIST.2T(J6,Number_of_Pairs-2)

into J7. I use the two-tailed t distribution function because I didn’t know the cor-
relation’s direction in advance. And once again, the low p-value tells me to reject 
the null hypothesis.

A Heads-Up
A couple of things I’d like you to be aware of:

First, tied ranks do not appear in these examples. As it turns out, ties present a few 
wrinkles for the rank-based statistics (except for the Friedman two-way ANOVA), 
and I wanted to avoid all that.

Second, be aware that additional nonparametric tests are lurking in the remainder 
of this book. In Chapter  18, you find hypothesis testing based on the binomial 
distribution. In Chapter 23, I tell you about a way to test the independence of two 
nominal variables.
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Chapter 18
Introducing Probability

Throughout this book, I toss around the concept of probability because it’s 
the basis of hypothesis testing and inferential statistics. Most of the time, I 
represent probability as the proportion of area under part of a distribution. 

For example, the probability of a Type I error (also known as α) is the area in a tail 
of the standard normal distribution or the t distribution.

In this chapter, I explore probability in greater detail, including random variables, 
permutations, and combinations. I examine probability’s fundamentals and 
applications and then zero in on a couple of specific probability distributions. 
Then, after telling you about probability concepts, I discuss probability-related 
Excel worksheet functions.

What Is Probability?
Most of us have an intuitive idea about what probability is all about. Toss a fair 
coin and you have a 50-50 chance it comes up Heads. Toss a fair die (one of a pair 
of dice) and you have a one-in-six chance that it comes up a 2.

If you wanted to be more formal in your definition, you’d most likely say some-
thing about all the possible things that could happen, and the proportion of those 
things you care about. Two things can happen when you toss a coin, and if you 
care about only one of them (Heads), the probability of that event happening is 

IN THIS CHAPTER

 » Defining probability

 » Working with probability

 » Dealing with random variables and 
their distributions

 » Focusing on the binomial distribution
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one out of two. Six things can happen when you toss a die, and if you care about 
only one of them (2), the probability of that event happening is one out of six.

Experiments, trials, events,  
and sample spaces
Statisticians and others who work with probability refer to a process like tossing 
a coin or throwing a die as an experiment. Each time you go through the process, 
that’s a trial.

This might not fit your personal definition of an experiment (or of a trial, for that 
matter), but for a statistician, an experiment is any process that produces one of at 
least two distinct results (like Heads or Tails).

Here’s another piece of the definition of an experiment: You can’t predict the 
result with certainty. Each distinct result is called an elementary outcome. Put a 
bunch of elementary outcomes together and you have an event. For example, with 
a die, the elementary outcomes 2, 4, and 6 make up the event “even number.”

Put all the possible elementary outcomes together and you have yourself a sample 
space. The numbers 1, 2, 3, 4, 5, and 6 make up the sample space for a die. Heads 
and Tails make up the sample space for a coin.

Sample spaces and probability
How does all this play into probability? If each elementary outcome in a sample 
space is equally likely, the probability of an event is

pr Event =
Number of Elementary Outcomes in the Event

Number  of Elementary Outcomes in the Sample Space

So, the probability of tossing a die and getting an even number is

pr Even Number =
Number of Even-Numbered Elementary Outcomess

Number of Possible Outcomes of a Die
3
6

5.

If the elementary outcomes aren’t equally likely, you find the probability of an 
event in a different way. First, you have to have some way of assigning a proba-
bility to each one. Then you add up the probabilities of the elementary outcomes 
that make up the event.

A couple of things to bear in mind about outcome probabilities: Each probability 
has to be between zero and one. All the probabilities of elementary outcomes in a 
sample space have to add up to 1.00.
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How do you assign those probabilities? Sometimes you have advance  
information — such as knowing that a coin is biased toward coming up heads  
60 percent of the time. Sometimes you just have to think through the situation to 
figure out the probability of an outcome.

Here’s a quick example of “thinking through.” Suppose a die is biased so that the 
probability of an outcome is proportional to the numerical label of the outcome: A 
6 comes up six times as often as a 1, a 5 comes up five times as often as a 1, and so 
on. What is the probability of each outcome? All the probabilities have to add up to 
1.00, and all the numbers on a die add up to 21 (1+2+3+4+5+6 = 21), so the proba-
bilities are: pr(1) = 1/21, pr(2) = 2/21, . . ., pr(6) = 6/21.

Compound Events
Some rules for dealing with compound events help you “think through.” A com-
pound event consists of more than one event. It’s possible to combine events by 
either union or intersection (or both).

Union and intersection
On the toss of a fair die, what’s the probability of rolling a 1 or a 4? Mathemati-
cians have a symbol for or. It’s called union, and it looks like this: ∪. Using this 
symbol, the probability of a 1 or a 4 is pr(1 ∪ 4).

In approaching this kind of probability, it’s helpful to keep track of the elementary 
outcomes. One elementary outcome is in each event, so the event “1 or 4” has two 
elementary outcomes. With a sample space of six outcomes, the probability is 2/6 
or 1/3. Another way to calculate this is

pr pr pr1 1 4 1
6

1
6

2
6

1
3

Here’s a slightly more involved one: What’s the probability of rolling a number 
between 1 and 3 or a number between 2 and 4?

Just adding the elementary outcomes in each event won’t get it done this time. 
Three outcomes are in the event “between 1 and 3,” and three are in the event 
“between 2 and 4.” The probability can’t be 3 + 3 divided by the six outcomes in 
the sample space because that’s 1.00, leaving nothing for pr(5) and pr(6). For the 
same reason, you can’t just add the probabilities.
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The challenge arises in the overlap of the two events. The elementary outcomes in 
“between 1 and 3” are 1, 2, and 3. The elementary outcomes in “between 2 and 4” 
are 2, 3, and 4. Two outcomes overlap: 2 and 3. To avoid counting them twice, the 
trick is to subtract them from the total.

A couple of things will make life easier as I proceed. I abbreviate “between  
1 and 3” as A and “between 2 and 4” as B. Also, I use the mathematical symbol for 
“overlap.” The symbol is ∩ and it’s called intersection.

Using the symbols, the probability of “between 1 and 3” or “between 2 and 4” is

pr A B

Number of Outcomes in A Number of Outcomes in B Nummber of Outcomes in A B
Number of Outcomes in the Sample  Space

pr A B 3 3 2
6

4
6

2
3

You can also work with the probabilities:

pr A B 3
6

3
6

2
6

4
6

2
3

The general formula is

pr A B pr A pr B pr A B

Why was it okay to just add the probabilities together in the earlier example? 
Because pr(1 ∩ 4) is zero: It’s impossible to roll a 1 and a 4 in the same toss of a die. 
Whenever pr(A ∩ B) = 0, A and B are said to be mutually exclusive.

Intersection, again
Imagine tossing a coin and rolling a die at the same time. These two experiments 
are independent because the result of one has no influence on the result of the 
other.

What’s the probability of getting Heads and a 4? You use the intersection symbol 
and write this as pr(Heads ∩ 4):

pr Heads
Number of Elementary Outcomes in Heads  4

Numb
4

eer of Elementary Outcomes in the Sample Space

Start with the sample space. Table 18-1 lists all elementary outcomes.
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As the table shows, 12 outcomes are possible. How many outcomes are in the event 
“Heads and 4”? Just one. So

pr Heads
Number of Elementary Outcomes in Heads  4

Numb
4

eer of Elementary Outcomes in the Sample Space
1

12

You can also work with the probabilities:

pr Heads pr Heads pr 44 1
12

In general, if A and B are independent,

pr A B pr A pr B

Conditional Probability
In some circumstances, you narrow the sample space — for example, I toss a die, 
and I tell you the result is greater than 2. What’s the probability that it’s a 5?

Ordinarily, the probability of a 5 would be 1/6. In this case, however, the sample 
space isn’t 1, 2, 3, 4, 5, and 6. When you know that the result is greater than 2, the 
sample space becomes 3, 4, 5, and 6. The probability of a 5 is now 1/4.

This is an example of conditional probability. It’s “conditional” because I’ve given 
a “condition” — the toss resulted in a number greater than 2. The notation for 
this is

pr Greater than 25|

The vertical line is shorthand for the word given, and you read that notation as, 
“the probability of a 5 given greater than 2.”

TABLE 18-1	 The Elementary Outcomes in the Sample  
Space for Tossing a Coin and Rolling a Die

Heads, 1 Tails, 1

Heads, 2 Tails, 2

Heads, 3 Tails, 3

Heads, 4 Tails, 4

Heads, 5 Tails, 5

Heads, 6 Tails, 6
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Working with the probabilities
In general, if you have two events A and B,

pr A B
pr A B

pr B
|

( )
( )

as long as pr(B) isn’t zero.

For the intersection in the numerator on the right, this is not a case where you just 
multiply probabilities together. In fact, if you could do that, you would have no 
conditional probability, because that would mean A and B are independent. If 
they’re independent, one event can’t be conditional on the other.

You have to think through the probability of the intersection. In a die, how many 
outcomes are in the event “5 ∩ greater than 2”? Just one, so pr(5 ∩ greater than 2) 
is 1/6, and

pr Greater than 2
pr Greater than 2

pr Greater than 2
5

5
|

1
6

4
6

1
4

The foundation of hypothesis testing
All the hypothesis testing I show you in previous chapters involves conditional 
probability. When you calculate a sample statistic, compute a statistical test, and 
then compare the test statistic against a critical value, you’re looking for a condi-
tional probability. Specifically, you’re trying to find

pr obtained test statistic or a more extreme value|H  is tr0 uue

If that conditional probability is low (less than .05 in all the examples I show you 
in hypothesis testing chapters), you reject H0.

Large Sample Spaces
When dealing with probability, it’s important to understand the sample space. In 
the examples I show you, the sample spaces are small. With a coin or a die, it’s 
easy to list all the elementary outcomes.

The world, of course, isn’t that simple. In fact, probability problems that live in 
statistics textbooks aren’t even that simple. Most of the time, sample spaces are 
large and it’s inconvenient to list every elementary outcome.
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Take, for example, rolling a die twice. How many elementary outcomes are in the 
sample space consisting of both tosses? You can sit down and list them, but it’s 
better to reason it out: Six possibilities for the first toss, and each of those six can 
pair up with six possibilities on the second. So the sample space has 6 × 6 = 36 
possible elementary outcomes. (This is similar to the coin-and-die sample space 
in Table 18-1, where the sample space consists of 2 × 6 = 12 elementary outcomes. 
With 12 outcomes, it’s easy to list them all in a table. With 36 outcomes, it starts 
to get, well, dicey.)

Events often require some thought, too. What’s the probability of rolling a die 
twice and totaling 5? You have to count the number of ways the two tosses can 
total 5 and then divide by the number of elementary outcomes in the sample space 
(36). You total a 5 by getting any of these pairs of tosses: 1 and 4, 2 and 3, 3 and 2, 
or 4 and 1. That totals four ways, and they don’t overlap (excuse me  —  
intersect), so

pr 5 =
Number of Ways of Rolling a 5

Number of Possible Outcoomes of Two Tosses
4
36

11.

Listing all the elementary outcomes for the sample space is often a nightmare. 
Fortunately, shortcuts are available, as I show in the upcoming subsections. 
Because each shortcut quickly helps you count a number of items, another name 
for a shortcut is a counting rule.

Believe it or not, I just slipped one counting rule past you. A couple of paragraphs 
ago, I say that in two tosses of a die you have a sample space of 6 × 6 = 36 possible 
outcomes. This is the product rule: If N1 outcomes are possible on the first trial of 
an experiment, and N2 outcomes on the second trial, the number of possible out-
comes is N1N2. Each possible outcome on the first trial can associate with all pos-
sible outcomes on the second. What about three trials? That’s N1N2N3.

Now for a couple more counting rules.

Permutations
Suppose you have to arrange five objects into a sequence. How many ways can you 
do that? For the first position in the sequence, you have five choices. After you 
make that choice, you have four choices for the second position. Then you have 
three choices for the third, two for the fourth, and one for the fifth. The number 
of ways is (5)(4)(3)(2)(1) = 120.

In general, the number of sequences of N objects is N(N–1)(N–2) . . . (2)(1). This 
kind of computation occurs fairly frequently in probability world, and it has its 
own notation: N! You don’t read this by screaming out “N” in a loud voice. Instead, 
it’s “N factorial.” By definition, 1! = 1, and 0! = 1.
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Now for the good stuff. If you have to order the 26 letters of the alphabet, the 
number of possible sequences is 26!, a huge number. But suppose the task is to 
create 5-letter sequences so that no letter repeats in the sequence. How many 
ways can you do that? You have 26 choices for the first letter, 25 for the second, 
24 for the third, 23 for the fourth, 22 for the fifth, and that’s it. So that’s (26)(25)
(24)(23)(22). Here’s how that product is related to 26!:

26
21

!
!

Each sequence is called a permutation. In general, if you take permutations of N 
things r at a time, the notation is NPr (the P stands for permutation). The formula is

N rP N
N r

!
!

Just for completeness, here’s another wrinkle. Suppose that I allow repetitions in 
these sequences of 5. That is, aabbc is a permissible sequence. In that case, the 
number of sequences is 26 × 26 × 26 × 26 × 26, or as mathematicians would say, 
“26 raised to the fifth power.” Or, as mathematicians would write, “265.”

Combinations
In the example in the previous section, these sequences are different from one 
another: abcde, adbce, dbcae, and on and on and on. In fact, you could come up with 
5! = 120 of these different sequences just for the letters a, b, c, d, and e.

Suppose that I add the restriction that one of these sequences is no different from 
another, and all I’m concerned about is having sets of five nonrepeating letters in 
no particular order. Each set is called a combination. For this example, the number 
of combinations is the number of permutations divided by 5!:

26
5 21

!
! !

In general, the notation for combinations of N things taken r at a time is NCr (the C 
stands for combination). The formula is

N rC N
r N r

!
! !

And now for that completeness wrinkle again. Suppose that I allow repetitions in 
these sequences. How many sequences would I have? It turns out to be equivalent 
to N+r-1 things taken N–1 at a time, or N+r+1CN–1. For this example, that’s 30C25.
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Worksheet Functions
Excel provides functions that help you with factorials, permutations, and 
combinations.

FACT
FACT, which computes factorials, is surprisingly not categorized as Statistical. 
Instead, you’ll find it on the Math & Trig Functions menu. It’s easy to use. Supply 
it with a number, and it returns the factorial. Follow these steps:

1. Select a cell for FACT’s answer.

2. From the Math & Trig Functions menu, select FACT to open its Function 
Arguments dialog box.

3. In the Function Arguments dialog box, enter the appropriate value for 
the argument.

In the Number box, I typed the number whose factorial I want to compute.

The answer appears in the dialog box. If I enter 5, for example, 120 appears.

4. Click OK to put the answer into the selected cell.

PERMUT and PERMUTIONA
You find these two on the Statistical Functions menu. As its name suggests, 
PERMUT enables you to calculate NPr. Here’s how to use it to find 26P5, the number 
of 5-letter sequences (no repeating letters) that you can create from the 26 letters 
of the alphabet. In a permutation, remember, abcde is considered different from 
bcdae. Follow these steps:

1. Select a cell for PERMUT’s answer.

2. From the Statistical Functions menu, select PERMUT to open its Function 
Arguments dialog box. (See Figure 18-1.)

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the Number box, I entered the N in NPr. For this example, N is 26.

In the Number_chosen box, I entered the r in NPr. That would be 5.

With values entered for both arguments, the answer appears in the dialog box. 
For this example, the answer is 7893600.

4. Click OK to put the answer into the selected cell.
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PERMUTIONA does the same thing, but with repetitions allowed. Its Function Argu-
ments dialog box looks exactly like the one for PERMUT. Its answer is equivalent to 
Nr. For this example, by the way, that answer is 11881376.

COMBIN and COMBINA
COMBIN works pretty much the same way as PERMUT. Excel categorizes COMBIN and 
COMBINA as Math & Trig functions.

Here’s how you use them to find 26C5, the number of ways to construct a 5-letter 
sequence (no repeating letters) from the 26 letters of the alphabet — in a combi-
nation, abcde is considered equivalent to bcdae:

1. Select a cell for COMBIN’s answer.

2. From the Math & Trig Functions menu, select COMBIN to open its Function 
Arguments dialog box.

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the Number box, I entered the N in NCr. Once again, N is 26.

In the Number_chosen box, I entered the r in NCr. And again, r is 5.

With values entered for both arguments, the answer appears in the dialog box. 
For this example, the answer is 65870.

4. Click OK to put the answer into the selected cell.

If you allow repetitions, use COMBINA. Its Function Arguments dialog box looks 
just like COMBIN’s. For this example, its answer is equivalent to 30C25 (142506).

FIGURE 18-1: 
The Function 

Arguments dialog 
box for PERMUT.
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Random Variables: Discrete  
and Continuous

Return to tosses of a fair die, where six elementary outcomes are possible. If I use 
x to refer to the result of a toss, x can be any whole number from 1 to 6. Because x 
can take on a set of values, it’s a variable. Because x’s possible values correspond 
to the elementary outcomes of an experiment (meaning you can’t predict its val-
ues with absolute certainty), x is called a random variable.

Random variables come in two varieties. One variety is discrete, of which die- 
tossing is a good example. A discrete random variable can take on only what 
mathematicians like to call a countable number of values — like the numbers 1 
through 6. Values between the whole numbers 1 through 6 (like 1.25 or 3.1416) are 
impossible for a random variable that corresponds to the outcomes of die tosses.

The other kind of random variable is continuous. A continuous random variable can 
take on an infinite number of values. Temperature is an example. Depending on 
the precision of a thermometer, having temperatures like 34.516 degrees is 
possible.

Probability Distributions  
and Density Functions

Back to die-tossing again. Each value of the random variable x (1–6, remember) 
has a probability. If the die is fair, each probability is 1/6. Pair each value of a dis-
crete random variable like x with its probability, and you have a probability 
distribution.

Probability distributions are easy enough to represent in graphs. Figure  18-2 
shows the probability distribution for x.

A random variable has a mean, a variance, and a standard deviation. Calculating 
these parameters is straightforward. In the random-variable world, the mean is 
called the expected value, and the expected value of random variable x is abbrevi-
ated as E(x). Here’s how you calculate it:

E x x pr x
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For the probability distribution in Figure 18-2, that’s

E x x pr x 1 1
6

2 1
6

3 1
6

4 1
6

5 1
6

6 11
6

3 5.

The variance of a random variable is often abbreviated as V(x), and the formula is

V x x pr x E x2 2

Working with the probability distribution in Figure 18-2 once again,

V x 1 1
6

2 1
6

3 1
6

4 1
6

5 1
6

6 1
6

2 2 2 2 2 2 3 5 2 917
2

. .

The standard deviation is the square root of the variance, which in this case is 
1.708.

For continuous random variables, things become a little trickier. You can’t pair a 
value with a probability because you can’t really pin down a value. Instead, you 
associate a continuous random variable with a mathematical rule (an equation) 
that generates probability density, and the distribution is called a probability density 
function. To calculate the mean and variance of a continuous random variable, you 
need calculus.

In Chapter 8, I show you a probability density function — the standard normal 
distribution. I reproduce it here as Figure 18-3.

FIGURE 18-2: 
The probability 

distribution for x, 
a random 

variable based on 
the tosses of a 

fair die.
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In the figure, f(x) represents the probability density. Because probability density 
can involve some heavyweight mathematical concepts, I won’t go into it. As I 
mention in Chapter 8, think of probability density as something that turns the 
area under the curve into probability.

Although you can’t speak of the probability of a specific value of a continuous 
random variable, you can work with the probability of an interval. To find the 
probability that the random variable takes on a value within an interval, you find 
the proportion of the total area under the curve that’s inside that interval. (See 
Figure 18-3.) The probability that x is between 0 and 1 σ is .3413.

For the rest of this chapter, I deal only with discrete random variables. A specific 
one is up next.

The Binomial Distribution
Imagine an experiment that has these six characteristics:

 » The experiment consists of N identical trials.

A trial can be the toss of a die or the toss of a coin.

FIGURE 18-3: 
The standard 

normal 
 distribution: a 

probability 
density function.
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 » Each trial results in one of two elementary outcomes.

 » Calling one outcome a success and the other a failure is standard procedure. 
For die-tossing, a success might be a toss that comes up with a 3, in which 
case a failure is any other outcome.

 » The probability of a success remains the same from trial to trial.

Again, it’s standard to use p to represent the probability of a success, and to 
use 1–p (or q) to represent the probability of a failure.

 » The trials are independent.

 » The discrete random variable x is the number of successes in the N trials.

This type of experiment is called a binomial experiment. The probability distribu-
tion for x follows this rule:

pr x N
x n x

p px N x!
! !

1

On the extreme right, px(1–p)N–x is the probability of one combination of x suc-
cesses in N trials. The term to its immediate left is NCx, the number of possible 
combinations of x successes in N trials.

This is called the binomial distribution. You use it to find probabilities like the prob-
ability you’ll roll four 3s in ten tosses of a die:

pr 4 10
4 6

1
6

5
6

054
4 6!

! !
.

The negative binomial distribution is closely related. In this distribution, the ran-
dom variable is the number of trials before the xth success. For example, you use 
the negative binomial to find the probability of five tosses that result in anything 
but a 3 before the fourth time you roll a 3.

For this to happen, in the eight tosses before the fourth 3, you have to roll five 
non-3s and three successes (tosses when a 3 comes up). Then the next toss results 
in a 3. The probability of a combination of four successes and five failures is  
p4(1–p)5. The number of ways you can have a combination of five failures and 
four-to-one successes is 5+4–1C4–1. So the probability is

pr 5 failures before the th success4
5 4 1
4 1 5

1
6

!
! !

4 55
6

017.
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In general, the negative binomial distribution (sometimes called the Pascal distri-
bution) is

pr f x
f x

x f
p x failures before the th success

1
1

!
! !

11 p
f

Worksheet Functions
These distributions are computation intensive, so I cover the worksheet functions 
right away.

BINOM.DIST and BINOM.DIST.RANGE
These are Excel’s worksheet functions for the binomial distribution. Use BINOM.
DIST to calculate the probability of rolling four 3s in ten tosses of a fair die:

1. Select a cell for BINOM.DIST’s answer.

2. From the Statistical Functions menu, select BINOM.DIST to open its 
Function Arguments dialog box. (See Figure 18-4.)

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the Number_s box, I entered the number of successes. For this example, the 
number of successes is 4.

In the Trials box, I entered the number of trials. The number of trials is 10.

In the Probability_s box, I entered the probability of a success. I entered 1/6, 
the probability of a 3 on the toss of a fair die.

In the Cumulative box, one possibility is FALSE for the probability of exactly the 
number of successes entered in the Number_s box. The other is TRUE for the 
probability of getting that number of successes or fewer. I entered FALSE.

With values entered for all arguments, the answer appears in the dialog box.

4. Click OK to put the answer into the selected cell.

To give you a better idea of what the binomial distribution looks like, I use BINOM.
DIST (with FALSE entered in the Cumulative box) to find pr(0) through pr(10), and 
then I use Excel’s graphics capabilities (refer to Chapter 3) to graph the results. 
Figure 18-5 shows the data and the graph.
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Incidentally, if you type TRUE in the Cumulative box, the result is .984 (and some 
more decimal places), which is pr(0) + pr(1) + pr(2) + pr(3) + pr(4).

Figure 18-5 is helpful if you want to find the probability of getting between four 
and six successes in ten trials. Find pr(4), pr(5), and pr(6) and add the 
probabilities.

A much easier way, especially if you don’t have a chart like Figure 18-5 handy or 
if you don’t want to apply BINOM.DIST three times, is to use BINOM.DIST.RANGE. 
Figure 18-6 shows the dialog box for this function, supplied with values for the 
arguments. After all the arguments are entered, the answer (0.069460321) appears 
in the dialog box.

If you don’t put a value in the Number_s2 box, BINOM.DIST.RANGE returns the 
probability of whatever you entered into the Number_s box. If you don’t put a 
value in the Number_s box, the function returns the probability of, at most, the 
number of successes in the Number_s2 box (for example, the cumulative 
probability).

FIGURE 18-4: 
The BINOM.DIST 

Function 
Arguments 
dialog box.

FIGURE 18-5: 
The binomial 

distribution for x 
successes in ten 

tosses of a die, 
with p = 1/6.
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NEGBINOM.DIST
As its name suggests, NEGBINOM.DIST handles the negative binomial distribution. 
I use it here to work out the earlier example  — the probability of getting  
five failures (tosses that result in anything but a 3) before the fourth success (the 
fourth 3). Here are the steps:

1. Select a cell for NEGBINOM.DIST’s answer.

2. From the Statistical Functions menu, select NEGBINOM.DIST to open its 
Function Arguments dialog box. (See Figure 18-7.)

FIGURE 18-6: 
The Function 

Arguments dialog 
box for BINOM 
.DIST.RANGE.

FIGURE 18-7: 
The NEGBINOM.

DIST Function 
Arguments 
dialog box.
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3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the Number_f box, I entered the number of failures. The number of failures 
is 5 for this example.

In the Number_s box, I entered the number of successes. For this example, 
that’s 4.

In the Probability_s box, I entered 1/6, the probability of a success.

In the Cumulative box, I entered FALSE. This gives the probability of the 
number of successes. If I enter TRUE, the result is the probability of, at most, 
that number of successes.

With values entered for all the arguments, the answer appears in the dialog 
box. The answer is 0.017 and some additional decimal places.

4. Click OK to put the answer into the selected cell.

Hypothesis Testing with the  
Binomial Distribution

Hypothesis tests sometimes involve the binomial distribution. Typically, you have 
some idea about the probability of a success, and you put that idea into a null 
hypothesis. Then you perform N trials and record the number of successes. Finally, 
you compute the probability of getting that many successes or a more extreme 
amount if your H0 is true. If the probability is low, reject H0.

When you test in this way, you’re using sample statistics to make an inference 
about a population parameter. Here, that parameter is the probability of a success 
in the population of trials. By convention, Greek letters represent parameters. 
Statisticians use π (pi), the Greek equivalent of p, to stand for the probability of a 
success in the population.

Continuing with the die-tossing example, suppose you have a die and you want to 
test whether it’s fair. You suspect that if it’s not, it’s biased toward 3. Define a toss 
that results in 3 as a success. You toss it ten times. Four tosses are successes. Cast-
ing all this into hypothesis-testing terms:

H0: π ≤ 1/6

H1: π > 1/6
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As I usually do, I set α = .05.

To test these hypotheses, you have to find the probability of getting at least four 
successes in ten tosses with p = 1/6. That probability is pr(4) + pr(5) + pr(6) + pr(7) 
+ pr(8) + pr(9) + pr(10). If the total is less than .05, reject H0.

That’s a lot of calculating. You can use BINOM.DIST to take care of it all (as I did 
when I set up the worksheet shown earlier, in Figure 18-5), or you can take a dif-
ferent route. You can find a critical value for the number of successes, and if the 
number of successes is greater than the critical value, reject H0.

How do you find the critical value? You can use a convenient worksheet function 
that I’m about to show you.

BINOM.INV
This function is tailor-made for binomial-based hypothesis testing. Give BINOM.
INV the number of trials, the probability of a success, and a criterion cumulative 
probability, and it returns the smallest value of x (the number of successes) for 
which the cumulative probability is greater than or equal to the criterion.

Here are the steps for the hypothesis testing example I just showed you:

1. Select a cell for BINOM.INV’s answer.

2. From the Statistical Functions menu, select BINOM.INV and click OK to 
open its Function Arguments dialog box. (See Figure 18-8.)

FIGURE 18-8: 
The BINOM.INV 

Function 
Arguments 
dialog box.
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3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Trials box, I entered 10, the number of trials.

In the Probability_s box, I entered the probability of a success. In this example 
it’s 1/6, the value of π according to H0.

In the Alpha box, I entered the cumulative probability to exceed. I entered .95 
because I want to find the critical value that cuts off the upper 5 percent of the 
binomial distribution.

With values entered for the arguments, the critical value, 4, appears in the 
dialog box.

4. Click OK to put the answer into the selected cell.

As it happens, the critical value is the number of successes in the sample. The 
decision is to reject H0.

More on hypothesis testing
In some situations, the binomial distribution approximates the standard normal 
distribution. When this happens, you use the statistics of the normal distribution 
to answer questions about the binomial distribution.

Those statistics involve z-scores, which means that you have to know the mean 
and the standard deviation of the binomial. Fortunately, they’re easy to compute. 
If N is the number of trials and π is the probability of a success, the mean is

N

the variance is

2 1N

and the standard deviation is

N 1

The binomial approximation to the normal is appropriate when N π ≥ 5 and  
N(1–π) ≥ 5.

When you test a hypothesis, you’re making an inference about π, and you have to 
start with an estimate. You run N trials and get x successes. The estimate is

P x
N
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To create a z-score, you need one more piece of information — the standard error 
of P. This sounds harder than it is because this standard error is just

P N
1

Now you’re ready for a hypothesis test.

Here’s an example. The CEO of FarKlempt Robotics, Inc., believes that 50 percent 
of FarKlempt robots are purchased for home use. A sample of 1,000 FarKlempt 
customers indicates that 550 of them use their robots at home. Is this significantly 
different from what the CEO believes? The hypotheses:

H0: π = .50

H1: π ≠.50

I set α = .05

N π = 500, and N(1–π) = 500, so the normal approximation is appropriate.

First, calculate P:

P x
N

550
1000

55.

Now create a z-score:

z P

N
1

55 50
50 1 50

1000

05
25

1000

3 162. .
. .

.
.

.

With α = .05, is 3.162 a large enough z-score to reject H0? An easy way to find out 
is to use the worksheet function NORM.S.DIST. (See Chapter 8.) When you do, you 
find that this z-score cuts off less than .01 of the area in the upper tail of the stan-
dard normal distribution. The decision is to reject H0.

The Hypergeometric Distribution
Here’s another distribution that deals with successes and failures.

I start with an example. In a set of 16 light bulbs, 9 are good and 7 are defective. If 
you randomly select 6 light bulbs out of these 16, what’s the probability that 3 of 
the 6 are good? Consider selecting a good light bulb as a success.
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When you finish selecting, your set of selections is a combination of three of the 
nine good light bulbs together with a combination of three of the seven defective 
light bulbs. The probability of getting three good bulbs is a, well, combination of 
counting rules:

pr
C C

C
3

84 35
8008

379 3 7 3

16 6
.

Each outcome of the selection of the good light bulbs can associate with all out-
comes of the selection of the defective light bulbs, so the product rule is appropri-
ate for the numerator. The denominator (the sample space) is the number of 
possible combinations of 6 items in a group of 16.

This is an example of the hypergeometric distribution. In general, with a small pop-
ulation that consists of N1 successes and N2 failures, the probability of x successes 
in a sample of m items is

pr x
C C

C
N x N m x

N N m

1 2

1 2

The random variable x is said to be a hypergeometrically distributed random variable.

HYPGEOM.DIST
This function calculates everything for you when you deal with the hypergeomet-
ric distribution. Here’s how to use it to work through the preceding example:

1. Select a cell for HYPGEOM.DIST’s answer.

2. From the Statistical Functions menu, select HYPGEOM.DIST to open its 
Function Arguments dialog box. (See Figure 18-9.)

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the Sample_s box, I entered the number of successes in the sample. That 
number is 3 for this example.

In the Number_sample box, I entered the number of items in the sample. The 
sample size for this example is 6.

In the Population_s box, I entered the number of successes in the population. 
In this example that’s 7, the number of good light bulbs.

In the Number_pop box, I entered the number of items in the population. The 
total number of light bulbs is 16, and that’s the population size.
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In the Cumulative box, I entered FALSE. This gives the probability of the 
number of successes I entered in the Sample_s box. If I enter TRUE, the 
function returns the probability of, at most, that number of successes (for 
example, the cumulative probability).

With values entered for all arguments, the answer appears in the dialog box. 
The answer is 0.367 and some additional decimal places.

4. Click OK to put the answer into the selected cell.

As I do with the binomial, I use HYP.GEOM.DIST to calculate pr(0) through pr(6) for 
this example. Then I use Excel’s graphics capabilities (refer to Chapter 3) to graph 
the results. Figure 18-10 shows the data and the chart. My objective is to help you 
visualize and understand the hypergeometric distribution.

FIGURE 18-9: 
The HYPGEOM.

DIST Function 
Arguments 
dialog box.

FIGURE 18-10: 
The 

 hypergeometric 
distribution for x 

successes in a 
six-item sample 

from a  population 
that consists of 

seven successes 
and nine failures.
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Chapter 19
More on Probability

In Chapter 18, I delve into probability in a semiformal way and introduce distri-
butions of random variables. The binomial distribution is the starting point. In 
this chapter, I examine additional distributions.

One of the symbols on the pages of this book (and other books in the For Dummies 
series) lets you know that “technical stuff” follows. It might have been a good 
idea to hang that symbol above this chapter’s title. Here’s a minor note of caution: 
Some mathematics follows. I’ve added the math to help you understand what 
you’re doing when you work with the dialog boxes of the Excel functions I describe.

Are these functions on the esoteric side? Well . . . yes. Will you ever have occasion 
to use them? Well . . . you just might.

Discovering Beta
The beta distribution (not to be confused with beta, the probability of a Type 2 
error) is a sort of chameleon in the world of distributions. It takes on a wide vari-
ety of appearances, depending on the circumstances. I won’t give you all the 
mathematics behind the beta distribution, because the full treatment involves 
calculus.

IN THIS CHAPTER

 » Understanding the beta distribution

 » Pursuing Poisson

 » Grappling with gamma

 » Speaking exponentially
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The beta distribution connects with the binomial distribution, which I discuss in 
Chapter 18. The connection is this: In the binomial, the random variable x is the 
number of successes in N trials with p as the probability of a success. N and p are 
constants. In the beta distribution, the random variable x is the probability of a 
success, with N and the number of successes as constants.

Why is this useful? In the real world, you usually don’t know the value of p, and 
you’re trying to find it. Typically, you conduct a study, find the number of suc-
cesses in a set of trials, and then you have to estimate p. Beta shows you the like-
lihood of possible values of p for the number of trials and successes in your study.

Some of the math is complicated, but I can at least show you the rule that gener-
ates the density function for N trials with r successes, when N and r are whole 
numbers:

f x r N
N

r N r
x xr N r

| ,
!

! !
1

1 1
11 1

The vertical bar in the parentheses on the left means “given.” So this density 
function is for specific values of N and r. Calculus enters the picture when N and r 
aren’t whole numbers. (Density function? “Given”? Refer to Chapter 18.)

To give you an idea of what this function looks like, I used Excel to generate and 
graph the density function for four successes in ten trials. Figure 19-1 shows the 
data and the graph. Each value on the x-axis is a possible value for the probability 
of a success. The curve shows probability density. As I point out in Chapter 18, 
probability density is what makes the area under the curve correspond to proba-
bility. The curve’s maximum point is at x = .4, which is what you would expect for 
four successes in ten trials. I selected cell C3 so that the Formula bar shows how I 
used BETA.DIST to calculate the probabilities.

Suppose I toss a die (one of a pair of dice) and I define a success as any toss that 
results in a 3. I assume I’m tossing a fair die, so I assume that p = pr(3) = 1/6. Sup-
pose I toss a die ten times and get four 3s. How good does that fair-die assumption 
look?

The graph in Figure 19-1 gives you a hint: The area to the left of .16667 (the deci-
mal equivalent of 1/6) is a pretty small proportion of the total area, meaning that 
the probability that p is 1/6 or less is pretty low.

Now, if you have to go to all the trouble of creating a graph and then guesstimate 
proportions of area to come up with an answer like “pretty low,” you’re doing a 
whole lot of work for very little return. Fortunately, Excel has a better way . . .
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BETA.DIST
BETA.DIST eliminates the need for all the graphing and guesstimating. This func-
tion enables you to work with the cumulative beta distribution to determine the 
probability that p is less than or equal to some value. Considering the complexity 
of beta, BETA.DIST is surprisingly easy to work with.

In the BETA.DIST Function Arguments dialog box, and in the BETA.DIST Help file, 
you see Alpha and Beta. The dialog box tells you that each one is a “parameter to 
the distribution,” and the Help file tells you that each is “a parameter of the dis-
tribution.” Aside from altering the preposition, neither one is much help — at 
least, not in any way that helps you apply Alpha and Beta.

Here are the nuts-and-bolts: For the example you’re working through, Alpha is 
the number of successes, and Beta is the number of failures.

When you put the density function in terms of Alpha (α) and Beta (β), it’s

f x x x
1

1 1
11 1!

! !

Again, this applies only when α and β are both whole numbers. If that’s not the 
case, you need calculus to compute f(x).

Follow these steps:

1. Select a cell for BETA.DIST’s answer.

2. From the Statistical Functions menu, select BETA.DIST to open its 
Function Arguments dialog box. (See Figure 19-2.)

FIGURE 19-1: 
The Beta Density 
function for four 
successes in ten 

trials.
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3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

The X box holds the probability of a success. For this example, the probability 
of a success is 1⁄6.

Excel refers to Alpha and Beta (coming up next) as parameters to the distribu-
tion. I treat them as “number of successes” and “number of failures.” So I enter 
4 in the Alpha box and 6 in the Beta box.

In the Cumulative box, I typed TRUE. This gives the area under the Beta 
function curve between 0 and 1/6. If I type FALSE, it gives the height of the Beta 
function at the value of X. As the Formula bar in Figure 19-1 shows, I typed 
FALSE to create the chart.

The A box is an evaluation limit for the value in the X box. In English, that 
means a lower bound for the value. It isn’t relevant for this type of example. I 
left this box blank, which by default sets A = 0. Incidentally, the Help file refers 
to an optional B box that sets an upper bound on X. As you can see, no B box is 
here. The Help file is referring to something in an earlier version of this 
function.

After all the entries, the answer appears in the dialog box.

The answer for this example is .048021492. “Pretty low” indeed. With four 
successes in ten tosses, you’d intuitively expect that p is greater than 1/6.

4. Click OK to put the answer into the selected cell.

The beta distribution has wider applicability than I show you here. Consequently, 
you can put all kinds of numbers (within certain restrictions) into the boxes. For 
example, the value you put into the X box can be greater than 1.00, and you can 
enter values that aren’t whole numbers into the Alpha box and the Beta box.

FIGURE 19-2: 
The BETA.DIST 

Function 
Arguments 
dialog box.
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BETA.INV
BETA.INV is the inverse of BETA.DIST. If you enter a probability and values for 
successes and failures, it returns a value for p. For example, if you supply it with 
.048021492, four successes, and six failures, it returns 0.1666667 — the decimal 
equivalent of 1/6.

BETA.INV has a more helpful application. You can use it to find the confidence 
limits for the probability of a success.

Suppose you’ve found r successes in N trials, and you’re interested in the  
95 percent confidence limits for the probability of a success. The lower limit is

BETA.INV . , ,025 r N r

The upper limit is

BETA.INV . , ,975 r N r

Follow these steps to use BETA.INV:

1. Select a cell for BETA.INV’s answer.

2. From the Statistical Functions menu, select BETA.INV to open its Function 
Arguments dialog box. (See Figure 19-3.)

FIGURE 19-3: 
The BETA.INV 

Function 
Arguments 
dialog box.
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3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

The X box holds a cumulative probability. For the lower bound of the 95 
percent confidence limits, the probability is .025.

In the Alpha box, I entered the number of successes. For this example, that’s 4.

In the Beta box, I entered the number of failures (not the number of trials). The 
number of failures is 6.

The A box and the B box are evaluation limits for the value in the X box. These 
aren’t relevant for this type of example. I left them blank, which by default sets 
A = 0 and B=1.

With the entries for X, Alpha, and Beta, the answer appears in the dialog box. 
The answer for this example is .136995662.

4. Click OK to put the answer into the selected cell.

Entering .975 in the X box gives .700704575 as the result. So the 95 percent con-
fidence limits for the probability of a success are .137 and .701 (rounded off) if you 
have four successes in ten trials.

With more trials, of course, the confidence limit narrows. For 40 successes in  
100 trials, the confidence limits are .307 and .497.

Poisson
If you have the kind of process that produces a binomial distribution and you have 
an extremely large number of trials and a very small number of successes, the 
Poisson distribution approximates the binomial. The equation of the Poisson is

pr x e
x

x

( )
!

In the numerator, μ is the mean number of successes in the trials, and e is 2.71828 
(and infinitely more decimal places), a constant near and dear to the hearts of 
mathematicians.

Here’s an example. FarKlempt Robotics, Inc., produces a universal joint for its 
robots’ elbows. The production process is under strict computer control, so that 
the probability a joint is defective is .001. What is the probability that in a sample 
of 1,000, one joint is defective? What’s the probability that two are defective? 
Three?
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Named after 19th century mathematician Siméon-Denis Poisson, this distribution 
is computationally easier than the binomial — or at least it was, when mathema-
ticians had no computational aids. With Excel, you can easily use BINOM.DIST to 
do the binomial calculations.

First, I apply the Poisson distribution to the FarKlempt example. If π = .001 and  
N = 1000, the mean is

N 1000 001 1.

(Refer to Chapter 18 for an explanation of μ= N π.)

Now for the Poisson. The probability that one joint in a sample of 1,000 is defec-
tive is

pr e
x

x

( )
!

.
!

.1
1 2 71828

1
368

1 1

For two defective joints in 1000, it’s

pr e
x

x

( )
!

.
!

.2
1 2 71828

2
184

2 2

And for three defective joints in 1,000:

pr e
x

x

( )
!

.
!

.3
1 2 71828

3
061

3 3

It may seem odd that I refer to a defective item as a success. It’s just a way of 
labeling a specific event.

POISSON.DIST
Here are the steps for using Excel’s POISSON.DIST for the preceding example:

1. Select a cell for POISSON.DIST’s answer.

2. From the Statistical Functions menu, select POISSON.DIST to open its 
Function Arguments dialog box. (See Figure 19-4.)

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the X box, I entered the number of events for which I’m determining the 
probability. I’m looking for pr(1), so I entered 1.

In the Mean box, I entered the mean of the process. That’s N π, which for this 
example is 1.
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In the Cumulative box, it’s either TRUE for the cumulative probability or FALSE 
for just the probability of the number of events. I entered FALSE.

With the entries for X, Mean, and Cumulative, the answer appears in the dialog 
box. The answer for this example is .367879441.

4. Click OK to put the answer into the selected cell.

In the example, I show you the probability for two defective joints in 1,000 and the 
probability for three. To follow through with the calculations, type 2 in the X box 
to calculate pr(2), and type 3 to find pr(3).

As I mention earlier, in the 21st century it’s pretty easy to calculate the binomial 
probabilities directly. Figure  19-5 shows you the Poisson and the binomial  
probabilities for the numbers in column B and the conditions of the example.  
I graphed the probabilities so that you can see how close the two actually are.  
I selected cell D3, so the Formula bar shows you how I used BINOM.DIST to  
calculate the binomial probabilities.

Although the Poisson’s usefulness as an approximation is outdated, it has taken 
on a life of its own. Phenomena as widely disparate as reaction time data in psy-
chology experiments, degeneration of radioactive substances, and scores in pro-
fessional hockey games seem to fit Poisson distributions. This is why business 
analysts and scientific researchers like to base models on this distribution. (“Base 
models on"? What does that mean? I tell you all about it in Chapter 20.)

FIGURE 19-4: 
The POISSON.
DIST Function 

Arguments 
dialog box.
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Working with Gamma
You may recall from Chapter 18 that the number of ways of arranging N objects in a 
sequence is N! (“N factorial”). You might also recall that N! = N(N-1)(N-2). . .(2)(1). 
Obviously, the factorial only works for whole numbers, right?

The gamma function and GAMMA
Not so fast. Mathematicians (some pretty famous ones) have extended the facto-
rial concept to include non-integers and even negative numbers (which gets very 
hairy). This extension is called the gamma function. When gamma’s argument is a 
positive whole number — let’s call it N — the result is (N-1)!. Otherwise, gamma 
returns the result of a calculus-based equation.

Rather than go into all the calculus, I’ll just give you an example: 4! = 24 and 5! = 
120. So the factorial of 4.3 (whatever that would mean) should be somewhere 
between 24 and 120. Because of the N-1 I just mentioned, you’d find this factorial 
by letting gamma loose on 5.3 (rather than 4.3). And gamma(5.3) = 38.08.

GAMMA is the worksheet function for gamma. GAMMA takes a single argument. Feed 
it a number, and you get back its gamma-function value. For example,

=GAMMA(5.3)

returns 38.08.

FIGURE 19-5: 
Poisson 

probabilities and 
binomial 

probabilities.
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The gamma distribution and GAMMA.DIST
All the preceding is mostly within the realm of theoretical mathematics. Things 
get more interesting (and more useful) when you tie gamma to a probability dis-
tribution. This marriage is called the gamma distribution.

The gamma distribution is related to the Poisson distribution in the same way the 
negative binomial distribution is related to the binomial. The negative binomial 
tells you the number of trials until a specified number of successes in a binomial 
distribution. The gamma distribution tells you how many samples you go through 
to find a specified number of successes in a Poisson distribution. Each sample can 
be a set of objects (as in the FarKlempt Robotics universal joint example), a physi-
cal area, or a time interval.

The probability density function for the gamma distribution is

f x x e
x1

1
1

!

Again, this works when α is a whole number. If it’s not, you guessed it — calculus. 
(By the way, when this function has only whole-number values of α, it’s called the 
Erlang distribution, just in case anybody ever asks you.) The letter e, once again, is 
the constant 2.7818 I mention earlier.

Don’t worry about the exotic-looking math. As long as you understand what each 
symbol means, you’re in business. Excel does the heavy lifting for you.

So here’s what the symbols mean. For the FarKlempt Robotics example, α is the 
number of successes and β corresponds to μ in the Poisson distribution. The vari-
able x tracks the number of samples. So, if x is 3, α is 2, and β is 1, you’re talking 
about the probability density associated with finding the second success in the 
third sample, if the average number of successes per sample (of 1,000) is 1. (Where 
does 1 come from, again? That’s 1,000 universal joints per sample multiplied by 
.001, the probability of producing a defective one.)

To determine probability, you have to work with area under the density function. 
This brings me to the Excel worksheet function designed for the gamma 
distribution.

GAMMA.DIST gives you a couple of options. You can use it to calculate the probabil-
ity density, and you can use it to calculate probability. Figure 19-6 shows how I 
used the first option to create a graph of the probability density so you can see 
what the function looks like. Working within the context of the preceding exam-
ple, I set Alpha to 2 and Beta to 1, and calculated the density for the values of x in 
column D.
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The values in column E show the probability densities associated with finding the 
second defective universal joint in the indicated number of samples of 1,000. For 
example, cell E5 holds the probability density for finding the second defective 
joint in the third sample.

In real life, you work with probabilities rather than densities. Next, I show you 
how to use GAMMA.DIST to determine the probability of finding the second defec-
tive joint in the third sample.

Here are the steps:

1. Select a cell for GAMMA.DIST’s answer.

2. From the Statistical Functions menu, select GAMMA.DIST to open its 
Function Arguments dialog box. (See Figure 19-7.)

FIGURE 19-6: 
The density 
function for 

gamma, with 
Alpha = 2 and 

Beta =1.

FIGURE 19-7: 
The GAMMA.DIST 

Function 
Arguments 
dialog box.
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3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

The X box holds the number of samples for which I’m determining the 
probability. I’m looking for pr(3), so I entered 3.

In the Alpha box, I entered the number of successes. I want to find the second 
success in the third sample, so I entered 2.

In the Beta box, I entered the average number of successes that occur within a 
sample. For this example, that’s 1.

In the Cumulative box, the choices are TRUE for the cumulative distribution or 
FALSE to find the probability density. I want to find the probability, not the 
density, so I entered TRUE.

With values entered for X, Alpha, Beta, and Cumulative, the answer — 
.800851727 — appears in the dialog box.

4. Click OK to put the answer into the selected cell.

GAMMA.INV
If you want to know, at a certain level of probability, how many samples it takes 
to observe a specified number of successes, this is the function for you.

GAMMA.INV is the inverse of GAMMA.DIST. Enter a probability along with Alpha and 
Beta and it returns the number of samples. Its Function Arguments dialog box has 
a Probability box, an Alpha box, and a Beta box. Figure 19-8 shows what happens 
if you enter the cell that holds the answer for the preceding section (I stored it in 
cell A1) into the Probability box and the same numbers used earlier to get that 
answer for Alpha and Beta: The answer is 3.

FIGURE 19-8: 
The GAMMA.INV 

Function 
Arguments 
dialog box.
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Exponential
If you’re dealing with the gamma distribution and you have Alpha = 1, you have 
the exponential distribution. This gives the probability that it takes a specified 
number of samples to get to the first success.

What does the density function look like? Excuse me . . . I’m about to go mathe-
matical on you for a moment. Here, once again, is the density function for gamma:

f x x e
x1

1
1

!

If α = 1, it looks like this:

f x e
x1

Statisticians like substituting λ (the Greek letter lambda) for 1 , so here’s the final 
version:

f x e x

I bring this up because Excel’s EXPON.DIST Function Arguments dialog box has a 
box for LAMBDA, and I want you to know what it means.

EXPON.DIST
Use EXPON.DIST to determine the probability that it takes a specified number of 
samples to get to the first success in a Poisson distribution. Here, I work once 
again with the universal joint example. I show you how to find the probability that 
you’ll see the first success in the third sample. Here are the steps:

1. Select a cell for EXPON.DIST’s answer.

2. From the Statistical Functions menu, select EXPON.DIST to open its 
Function Arguments dialog box. (See Figure 19-9.)

3. In the Function Arguments dialog box, enter the appropriate values for 
the arguments.

In the X box, I entered the number of samples for which I’m determining the 
probability. I’m looking for pr(3), so I typed 3.

In the Lambda box, I entered the average number of successes per sample. 
This goes back to the numbers I give you in the example — the probability of a 
success (.001) times the number of universal joints in each sample (1,000). That 
product is 1, so I entered 1 in this box.



432      PART 4  Probability

In the Cumulative box, the choices are TRUE for the cumulative distribution or 
FALSE to find the probability density. I want to find the probability, not the 
density, so I entered TRUE.

With values entered for X, Lambda, and Cumulative, the answer appears in the 
dialog box. The answer for this example is .950212932.

4. Click OK to put the answer into the selected cell.

FIGURE 19-9: 
The EXPON.DIST 

Function 
Arguments 
dialog box.
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Chapter 20
Using Probability: 
Modeling and Simulation

Model is a term that gets thrown around a lot these days. Simply put, a 
model is something you know and can work with that helps you under-
stand something you know little about. A model is supposed to mimic, in 

some way, the thing it’s modeling. A globe, for example, is a model of the earth.  
A street map is a model of a neighborhood. A blueprint is a model of a building.

Researchers use models to help them understand natural processes and phenom-
ena. Business analysts use models to help them understand business processes. 
The models these people use might include concepts from mathematics and  
statistics — concepts that are so well known they can shed light on the unknown. 
The idea is to create a model that consists of concepts you understand, put the 
model through its paces, and see whether the results look like real-world results.

In this chapter, I discuss modeling. My goal is to show how you can harness 
Excel’s statistical capabilities to help you understand processes in your world.

IN THIS CHAPTER

 » Discovering models

 » Modeling and fitting

 » Working with the Monte Carlo 
method
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Modeling a Distribution
In one approach to modeling, you gather data and group them into a distribution. 
Next, you try to figure out a process that results in that kind of a distribution. 
Restate that process in statistical terms so that it can generate a distribution, and 
then see how well the generated distribution matches up to the real one. This 
“process you figure out and restate in statistical terms” is the model.

If the distribution you generate matches up well with the real data, does this mean 
your model is “right”? Does it mean the process you guessed is the process that 
produces the data?

Unfortunately, no. The logic doesn’t work that way. You can show that a model is 
wrong, but you can’t prove that it’s right.

Plunging into the Poisson distribution
In this section, I walk you through an example of modeling with the Poisson dis-
tribution. I introduce this distribution in Chapter 19, where I tell you it seems to 
characterize an array of processes in the real world. By “characterize a process,” I 
mean that a distribution of real-world data looks a lot like a Poisson distribution. 
When this happens, it’s possible that the kind of process that produces a Poisson 
distribution is also responsible for producing the data.

What is that process? Start with a random variable x that tracks the number of 
occurrences of a specific event in an interval. In Chapter 19, the “interval” is a 
sample of 1,000 universal joints, and the specific event is “defective joint.” Pois-
son distributions are also appropriate for events occurring in intervals of time, 
and the event can be something like “arrival at a toll booth.” Next, I outline the 
conditions for a Poisson process, and use both defective joints and toll booth arriv-
als to illustrate:

 » The number of occurrences of the event in two non-overlapping intervals are 
independent.

The number of defective joints in one sample is independent of the number 
of defective joints in another. The number of arrivals at a toll booth during 
one hour is independent of the number of arrivals during another.

 » The probability of an occurrence of the event is proportional to the size of the 
interval.
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The chance that you’ll find a defective joint is larger in a sample of 10,000 than 
it is in a sample of 1,000. The chance of an arrival at a toll booth is greater for 
one hour than it is for a half-hour.

 » The probability of more than one occurrence of the event in a small interval is 
0 or close to 0.

In a sample of 1,000 universal joints, you have an extremely low probability of 
finding two defective ones right next to one another. At any time, two vehicles 
don’t arrive at a toll booth simultaneously.

As I show you in Chapter 19, the formula for the Poisson distribution is

pr x e
x

x

!

In this equation, μ represents the average number of occurrences of the event in 
the interval you’re looking at, and e is the constant 2.781828 (followed by infi-
nitely many more decimal places).

Visualizing the Poisson distribution
To gain a deeper understanding of the Poisson distribution, here’s a way to visu-
alize and experiment with it. Figure 20-1 shows a spreadsheet with a chart of the 
Poisson and the values I based it on.

Cell A2 holds the value for the mean of the Poisson. I calculate the values for f(x) 
in column D by typing

=POISSON.DIST(C2,$A$2,FALSE)

FIGURE 20-1: 
Visualizing the 

Poisson 
distribution.
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into cell D2 and then autofilling. Using FALSE as the third argument causes the 
function to return the probability associated with the first argument. (TRUE returns 
the cumulative probability. For more on POISSON.DIST, see Chapter 19.)

Then I inserted a column chart and modified it somewhat. You learn this distribu-
tion when you try different values in A2 and note the effect on the chart.

Working with the Poisson distribution
Time to use the Poisson in a model. At the FarBlonJet Corporation, web designers 
track the number of hits per hour on the intranet home page. They monitor the 
page for 200 consecutive hours and group the data, as shown in Table 20-1.

Column 1 shows the variable Hits/Hour. Column 2, Observed Hours, shows the 
number of hours in which each value of Hits/Hour occurred. In the 200 hours 
observed, 10 of those hours went by with no hits, 30 hours had one hit, 44 had two 
hits, and so on. These data lead the web designers to use a Poisson distribution to 
model Hits/Hour. Another way to say this: They believe that a Poisson process 
produces the number of hits per hour on the web page.

Multiplying the values in Column 1 by the values in Column 2 results in the values in 
Column 3. Summing the values in Column 3 shows that in the 200 observed hours, 
the intranet page received 600 hits. So the average number of hits/hour is 3.00.

TABLE 20-1	 Hits Per Hour on the FarBlonJet Intranet Home Page
Hits/Hour Observed Hours Hits/Hour X Observed Hours

0 10 0

1 30 30

2 44 88

3 44 132

4 36 144

5 18 90

6 10 60

7 8 56

Total 200 600
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Applying the Poisson distribution to this example,

pr x e
x

e
x

x x

! !
3 3

From here on, I pick it up in Excel.

Using POISSON.DIST again
Figure 20-2 shows each value of x (hits/hour), the probability of each x if the aver-
age number of hits per hour is three, the predicted number of hours, and the 
observed number of hours (taken from Column 2 in Table 20-1). I selected cell B3 
so that the Formula bar shows how I used the POISSON.DIST worksheet function. 
I autofilled column B down to cell B10. (For the details on using POISSON.DIST, see 
Chapter 19.)

To get the predicted number of hours, I multiplied each probability in column B by 
200 (the total number of observed hours). I used Excel’s graphics capabilities (see 
Chapter 3) to show you how close the predicted hours are to the observed hours. 
They look pretty close, don’t they?

Testing the model’s fit
Well, “looking pretty close” isn’t enough for a statistician. A statistical test is a 
necessity. As is the case with all statistical tests, this one starts with a null hypoth-
esis and an alternative hypothesis. Here they are:

H0: The distribution of observed hits/hour follows a Poisson distribution.

H1: Not H0

FIGURE 20-2: 
Web page  

hits/hour —  
Poisson-predicted 

(μ =3) and 
observed.
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The appropriate statistical test involves an extension of the binomial distribution. 
It’s called the multinomial distribution — multi because it encompasses more cate-
gories than just “success” and “failure”. It’s difficult to work with, and Excel has 
no worksheet function to handle the computations.

Fortunately, pioneering statistician Karl Pearson (inventor of the correlation 
coefficient) noticed that χ2 (“chi-square”), a distribution I show you in  Chapter 10, 
approximates the multinomial. Originally intended for one-sample hypothesis 
tests about variances, χ2 has become much better known for applications like the 
one I’m about to show you.

Pearson’s big idea was this: If you want to know how well a hypothesized distri-
bution (like the Poisson) fits a sample (like the observed hours), use the distribu-
tion to generate a hypothesized sample (your predicted hours, for instance), and 
work with this formula:

2 Observed Predicted
Predicted

2

Usually, this is written with Expected rather than Predicted, and both Observed and 
Expected are abbreviated. The usual form of this formula is

2

2
O E

E

For this example,

2

2 2 2
10 9 9574

9 9574
30 29 8722

29 8722
8O E

E
.

.
.

.
...

44 3208
4 3208

2
.

.

What is that total? Excel figures it out for you. Figure 20-3 shows the same col-
umns as earlier, with column F holding the values for (O – E)2/E.

FIGURE 20-3: 
Web page  

hits/hour —  
Poisson-predicted 

(μ =3) and 
observed along 

with the 
calculations 

needed to 
compute χ2.
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I could have used this formula

=((D3-C3)^2)/C3

to calculate the value in F3 and then autofill up to F10.

I chose a different route, though. First, I assigned the name Predicted_Hrs to 
C3:C10 and the name Observed_Hrs to D3:D10. Then I selected F3 and created this 
formula:

=(Observed_Hrs-Predicted_Hrs)^2/Predicted_Hrs

Pressing Enter causes the result to appear in F3 and the remaining results to spill 
into F4 through F10.

The sum of the values in column F is in cell F11, and that’s χ2. If you’re trying to 
show that the Poisson distribution is a good fit to the data, you’re looking for a 
low value of χ2.

Okay. Now what? Is 3.5661 high, or is it low?

To find out, you evaluate the calculated value of χ2 against the χ2 distribution. The 
goal is to find the probability of getting a value at least as high as the calculated 
value, 3.5661. The trick is to know how many degrees of freedom (df) you have. 
For a goodness-of-fit application like this one

df k m 1

where k = the number of categories and m = the number of parameters estimated 
from the data. The number of categories is 8 (0 hits/hour through 7 hits/hour). 
The number of parameters? I used the observed hours to estimate the parameter 
μ, so m in this example is 1. That means df = 8 – 1 – 1 = 6.

Use the worksheet function CHISQ.DIST.RT on the value in F11, with 6 df. CHISQ.
DIST.RT returns .73515, the probability of getting a χ2 of at least 3.5661 if H0 is 
true. (Refer to Chapter 10 for more on CHISQ.DIST.RT.) Figure 20-4 shows the χ2 
distribution with 6 df and the darkened area to the right of 3.5661.

If α= .05, the decision is to not reject H0 — you can’t reject the hypothesis that the 
observed data come from a Poisson distribution.

This is one of those infrequent times when it’s beneficial to not reject H0 — if you 
want to make the case that a Poisson process is producing the data. If the proba-
bility had been just a little greater than .05, not rejecting H0 would look suspicious. 
The large probability, however, makes nonrejection of H0 — and an underlying 
Poisson process  — seem more reasonable. (For more on this, see the sidebar  
“A point to ponder,” in Chapter 10.)
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A word about CHISQ.TEST
Excel provides CHISQ.TEST, a worksheet function that at first glance appears to 
carry out the test I show you with about one-tenth the work I did on the work-
sheet. Its Function Arguments dialog box provides one box for the observed values 
and another for the expected values.

One problem is that CHISQ.TEST doesn’t return a value for χ2. It skips that step 
and returns the probability that you’ll get a χ2 at least as high as the one you cal-
culate from the observed values and the predicted values.

Another problem is that CHISQ.TEST’s degrees of freedom are wrong for this case. 
CHISQ.TEST goes ahead and assumes that df = k–1 (7) rather than k–m–1 (6). You 
lose a degree of freedom because you estimate μ from the data. In other kinds of 
modeling, you lose more than one degree of freedom. Suppose, for example, you 
believe that a normal distribution characterizes the underlying process. In that 
case, you estimate μ and σ from the data, and you lose two degrees of freedom.

By basing its answer on less than the correct df, CHISQ.TEST gives you an inap-
propriately large (and misleading) value for the probability.

CHISQ.TEST would be perfect if it had an option for entering df, or if it returned a 
value for χ2 (which you could then evaluate via CHI.DIST and the correct df).

FIGURE 20-4: 
The χ2 

 distribution,  
df = 6. The 

shaded area is 
the probability of 
getting a χ2 of at 
least 3.5661 if H0 

is true.
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When you don’t lose any degrees of freedom, CHISQ.TEST works as advertised. 
Does that ever happen? In the next section, it does.

Playing ball with a model
Baseball is a game that generates huge amounts of statistics — and many study 
these statistics closely. The Society for American Baseball Research (SABR) has 
sprung from the efforts of a band of dedicated fan-statisticians (fantasticians?) 
who delve into the statistical nooks and crannies of the Great American Pastime. 
They call their work sabermetrics. (I made up fantasticians. They call themselves 
sabermetricians.)

The reason I mention this is that sabermetrics supplies a nice example of model-
ing. It’s based on the obvious idea that during a game, a baseball team’s objective 
is to score runs and to prevent its opponent from scoring runs. The better a team 
does at both, the more games it wins. Bill James, who gave sabermetrics its name 
and is its leading exponent, discovered a neat relationship between the amount of 
runs a team scores, the amount of runs the team allows, and its winning percent-
age. He calls it the Pythagorean percentage:

Pythagorean Percentage
Runs Scored

Runs Scored Runs A

2

2
lllowed

2

Think of it as a model for predicting games won. (This is James’ original formula, 
and I use it throughout. Over the years, sabermetricians have found that 1.83 is a 
more accurate exponent than 2.) Calculate this percentage and multiply it by the 
number of games a team plays. Then compare the answer to the team’s wins. How 
well does the model predict the number of games each team won during the 2019 
season? (I used 2019 because it was the last fully played season when I wrote this 
chapter.)

To find out, I found all relevant data for every Major League Baseball team for 
2019. (Thank you, www.baseball-reference.com.) I put the data into the work-
sheet in Figure 20-5. In previous editions, I arranged the teams in alphabetical 
order. This time, I sorted them by number of runs scored in order to highlight the 
top run-scoring team. (Yes, I know that team didn’t win the 2019 World Series. 
Don’t go there. You’re better than that.)

As Figure 20-5 shows, I used an array formula to calculate the Pythagorean per-
centage in column D. First, I assigned the name Runs_Scored to the data in col-
umn B, and the name Runs_Allowed to the data in column C. Then I selected D2 
and created the formula

=Runs_Scored^2/(Runs_Scored^2 + Runs_Allowed^2)

http://www.baseball-reference.com/
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Next, I pressed Enter to put the result in D2 and spill the remaining results into D3 
through D31.

Had I wanted to do it another way, I’d have put this formula in cell D2:

=B2^2/((B2^2)+(C2^2))

Then I would have autofilled the remaining cells in column D.

Finally, I multiplied each Pythagorean percentage in column D by the number of 
games each team played (28 teams played 162 games, 2 played 161) to get the pre-
dicted wins in column F. Because the number of wins can only be a whole number, 
I used the ROUND function to round off the predicted wins. For example, the for-
mula that supplies the value in E3 is

=ROUND(D3*162,0)

The zero in the parentheses indicates that I wanted no decimal places.

Before proceeding, I assigned the name Predicted_Wins to the data in column F, 
and the name Wins to the data in column G.

FIGURE 20-5: 
Runs scored, runs 

allowed, 
predicted wins, 

and wins for each 
team in Major 

League Baseball 
in 2019, featuring 

the top  
run-scoring 

New York 
Yankees.
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How well does the model fit with reality? This time, CHISQ.TEST can supply the 
answer. I don’t lose any degrees of freedom here: I didn’t use the Wins data in 
column G to estimate any parameters, like a mean or a variance, and then apply 
those parameters to calculate Predicted Wins. Instead, the predictions came from 
other data — the runs scored and the runs allowed. For this reason, df = k – m –  
1= 30 – 0 – 1 = 29.

Here’s how to use CHISQ.TEST (when it’s appropriate!):

1. With the data entered, select a cell for CHISQ.TEST’s answer.

2. From the Statistical Functions menu, select CHISQ.TEST and click OK to 
open the Function Arguments dialog box for CHISQ.TEST. (See Figure 20-6.)

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the Actual_range box, type the cell range that holds the scores for the 
observed values. For this example, that’s Wins (the name for F2:F32).

In the Expected_range box, type the cell range that holds the predicted values. 
For this example, it’s Predicted_Wins (the name for E2:E32).

With the cursor in the Expected_range box, the dialog box mentions a product 
of row totals and column totals. Don’t let that confuse you. It has to do with a 
slightly different application of this function (which I cover in Chapter 23).

With values entered for Actual_range and for Expected_range, the answer 
appears in the dialog box. The answer here is .999999289, which means that 
with 29 degrees of freedom, you have a huge chance of finding a value of χ2 at 
least as high as the one you’d calculate from these observed values and these 
predicted values. Another way to say this: The calculated value of χ2 is very low, 
which means that the predicted wins are very close to the actual wins. Bottom 
line: The model fits the data extremely well.

4. Click OK to put the answer into the selected cell.

FIGURE 20-6: 
The CHISQ.TEST 

Function 
Arguments 
dialog box.
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A Simulating Discussion
Another approach to modeling is to simulate a process. The idea is to define, as 
much as you can, what a process does and then somehow use numbers to repre-
sent that process and carry it out. It’s a great way to find out what a process does, 
in case other methods of analysis are complex.

Taking a chance: The Monte Carlo method
Many processes contain an element of randomness. You just can’t predict the out-
come with certainty. To simulate this type of process, you have to have some way 
to simulate the randomness. Simulation methods that incorporate randomness 
are called Monte Carlo simulations. The name comes from the city in Monaco 
whose main attraction is gambling casinos.

In the next few sections, I show you a couple of examples. These examples aren’t 
so complex that you can’t analyze them. I use them for just that reason: You can 
check the results against analysis.

Loading the dice
In Chapter 18, I talk about a die (one member of a pair of dice) that’s biased to 
come up according to the numbers on its faces: A 6 is six times as likely as a 1, a 5 
is five times as likely, and so on. On any toss, the probability of getting a number 
n is n/21.

Suppose you have a pair of dice loaded this way. What would the outcomes of 200 
tosses of these dice look like? What would be the average of those 200 tosses? 
What would be the variance and the standard deviation? You can use Excel to set 
up Monte Carlo simulations and answer these questions.

To start, I use Excel to calculate the probability of each outcome. Figure 20-7 shows 
how I did it. Column A holds all possible outcomes (2 through 12) of tossing a pair of 
dice. Columns C through N hold the possible ways of getting each outcome. Columns 
C, E, G, I, K, and M show the possible outcomes on the first die. Columns D, F, H, J, 
L, and N show the possible outcomes on the second die. Column B gives the proba-
bility of each outcome, based on the numbers in columns C through M. I highlighted 
B7, so the Formula bar shows that I used this formula to have Excel calculate the 
probability of a 7:

=((C7*D7)+(E7*F7)+(G7*H7)+(I7*J7)+(K7*L7)+(M7*N7))/21^2
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I autofilled the remaining cells in column B.

The sum in B14 confirms that I considered every possibility.

Next, it’s time to simulate the process of tossing the dice. Each toss, in effect, 
generates a value of the random variable x according to the probability distribu-
tion defined by column A and column B. How do you simulate these tosses?

Data analysis tool: Random  
Number Generation
Excel’s Random Number Generation tool is tailor-made for this kind of simulation. 
Tell it how many values you want to generate to give it a probability distribution to 
work with, and it randomly generates numbers according to the parameters of the 
distribution. Each randomly generated number corresponds to a toss of the dice.

Here’s how to use the Random Number Generation tool:

1. Choose Data | Data Analysis from the main menu to open the Data 
Analysis dialog box.

2. In the Data Analysis dialog box, scroll down the Analysis Tools list and 
select Random Number Generation.

3. Click OK to open the Random Number Generation dialog box.

Figure 20-8 shows the Random Number Generation dialog box.

4. In the Number of Variables box, type the number of variables you want 
to create random numbers for.

I know, I know: Don’t end a sentence with a preposition. As Winston Churchill 
said, “That’s the kind of nonsense up with which I will not put.” Hey, but 
seriously, I entered 1 for this example. I’m only interested in the outcomes of 
tossing a pair of dice.

FIGURE 20-7: 
Outcomes and 

probabilities  
for a pair of 
loaded dice.
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5. In the Number of Random Numbers box, type the number of numbers to 
generate.

I entered 200 to simulate 200 tosses of the loaded dice.

6. In the Distribution box, click the down arrow to select the type of 
distribution.

You have seven options here. The choice you make determines what appears 
in the Parameters area of the dialog box, because different types of distribu-
tions have different types (and numbers) of parameters. You’re dealing with a 
discrete random variable here, so the appropriate choice is Discrete.

7. Choosing Discrete causes the Value and Probability Input Range box to 
appear under Parameters. Enter the array of cells that holds the values 
of the variable and the associated probabilities.

The possible outcomes of the tosses of the die are in A2:A12, and the probabili-
ties are in B2:B12, so the range is A2:B12. Excel fills in the dollar signs ($) for 
absolute referencing.

8. In the Output Options area, select a radio button to indicate where you 
want the results.

I selected New Worksheet Ply to put the results on a new worksheet in the 
workbook.

9. Click OK.

Because I selected New Worksheet Ply, a newly created worksheet opens with the 
results. Figure 20-9 shows the new page. The randomly generated numbers are in 
column A. The 200 rows of random numbers are too long to show you. I could have 

FIGURE 20-8: 
The Random 

Number 
Generation 
dialog box.
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cut-and-pasted them into ten columns of 20 cells, but then you’d just be looking 
at 200 random numbers.

Instead, I used FREQUENCY to group the numbers into frequencies in columns C 
and D and then used Excel’s graphics capabilities to create a graph of the results. 
I selected D2, so the formula box shows how I used FREQUENCY for that cell. As you 
can see, I defined Toss as the name for A2:A201 and x as the name for C2:C12.

What about the statistics for these simulated tosses?

=AVERAGE(Toss)

tells you that the mean is 8.43, and

=VAR.S(Toss)

returns 5.181 as the estimate of the variance. Applying SQRT to the variance returns 
2.276 as the estimate of the standard deviation.

How do these values match up with the parameters of the random variable? This 
is what I mean, earlier in this chapter, by “checking against analysis” In 
 Chapter 18, I show how to calculate the expected value (the mean), the variance, 
and the standard deviation for a discrete random variable.

The expected value is

E x x pr x

FIGURE 20-9: 
The results of 

simulating  
200 tosses of a 
pair of loaded 

dice.
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In the worksheet in Figure 20-7, shown earlier, I used the SUMPRODUCT worksheet 
function to calculate E(x). The formula is

=SUMPRODUCT(A2:A12,B2:B12)

The expected value is 8.667.

The variance is

V x x pr x E x2 2

With E(x) stored in B16, I used this formula:

=SUMPRODUCT(A2:A12,A2:A12,B2:B12)-B16^2

Note the use of A2:A12 twice in SUMPRODUCT. That gives you the sum of x2.

The formula returns 4.444 as the variance. SQRT applied to that number gives 
2.108 as the standard deviation.

Table 20-2 shows how closely the results from the simulation match up with the 
parameters of the random variable.

Simulating the Central limit Theorem
This might surprise you, but statisticians often use simulations to make determi-
nations about some of their statistics. They do this when mathematical analysis 
becomes very difficult.

For example, some statistical tests depend on normally distributed populations. If 
the populations aren’t normal, what happens to those tests? Do they still do what 
they’re supposed to? To answer that question, statisticians might create non-
normally distributed populations of numbers, simulate experiments with them, 
and apply the statistical tests to the simulated results.

TABLE 20-2	 Statistics from the Loaded Dice-Tossing Simulation  
and the Parameters of the Discrete Distribution

Simulation Statistic Distribution Parameter

Mean 8.430 8.667

Variance 5.181 4.444

Standard Deviation 2.276 2.108
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In this section, I use simulation to examine an important statistical item — the 
central limit theorem. In Chapter 9, I introduce the central limit theorem in con-
nection with the sampling distribution of the mean. In fact, I simulate sampling 
from a population with only three possible values to show you that even with a 
small sample size, the sampling distribution starts to look normally distributed.

Here, I use the Random Number Generation tool to set up a normally distributed 
population and draw 40 samples of 16 scores each. I calculate the mean of each 
sample and then set up a distribution of those means. The idea is to see how that 
distribution matches up with the central limit theorem.

The distribution for this example has the parameters of the population of scores 
on the IQ test, a distribution I use for examples in several chapters. It’s a normal 
distribution with μ = 100 and σ = 16. According to the central limit theorem, the 
mean of the distribution of means should be 100, and the standard deviation (the 
standard error of the mean) should be 4.

For a normal distribution, the Random Number Generation dialog box looks like 
Figure 20-10. The first two entries cause Excel to generate 16 random numbers for 
a single variable. Choosing Normal in the Distribution box causes the Mean box 
and the Standard Deviation box to appear under Parameters. As the figure shows, 
I entered 100 for the Mean and 16 for the Standard Deviation. Under Output 
Options, I selected Output Range and entered a column of 16 cells. This puts the 
randomly generated numbers into the indicated column on the current page, and 
(because I specified 40 samples) into 39 adjoining columns. Then I used AVERAGE 
to calculate the mean for each column (each sample, in other words), and then 
ROUND to round off each mean.

FIGURE 20-10: 
The Random 

Number 
Generation dialog 

box for a normal 
distribution.
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Next, I copied the 40 rounded sample means to another worksheet so that I can 
show you how they’re distributed.

I calculated their mean and the standard deviation. I used FREQUENCY to group the 
means into a frequency distribution and used Excel’s graphics capabilities to 
graph the distribution. Does the central limit theorem accurately predict the 
results? Figure 20-11 shows what I found.

The mean of the means, 100.575, is close to the central limit theorem’s predicted 
value of 100. The standard deviation of the means, 4.385, is close to the central 
limit’s predicted value of 4 for the standard error of the mean. The graph shows 
the makings of a normal distribution, though it’s slightly skewed. In general, the 
simulation matches up well with the central limit theorem. If you try this, you’ll 
get numbers different from mine, but your overall results should be in the same 
ballpark.

A couple of paragraphs ago, I said, “I copied the 40 rounded sample means to 
another worksheet.” That’s not quite a slam-dunk. When you try to paste a cell 
into another worksheet and that cell holds a formula, Excel usually balks and gives 
you an ugly-looking error message when you paste. This happens when the for-
mula refers to cell locations that don’t hold any values in the new worksheet.

FIGURE 20-11: 
The results of the 

central limit 
theorem 

simulation.
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To work around that problem, you have to play a little trick on the cell you want 
to copy. You have to convert its contents from a formula into the value that the 
formula calculates. The steps are:

1. Select the cell or cell array you want to copy.

2. Right-click and choose Copy from the contextual menu that appears (or 
just press Ctrl+C without right-clicking).

3. Right-click the cell where you want the copy to go.

This step opens the contextual menu shown in Figure 20-12.

4. From the contextual menu, under Paste Options, choose Paste Values.

It’s the second icon from the left — a clipboard labeled 123.

The contextual menu offers another helpful capability. Every so often in statistical 
work, you have to take a row of values and relocate them into a column, or vice 
versa. (I did that in this example.) Excel calls this process transposition. To trans-
pose, follow the same four steps, but in Step 4, choose Transpose. This one is the 
fourth icon from the left — a clipboard with two perpendicular arrows.

FIGURE 20-12: 
When you copy a 

cell array and 
then right-click 

another cell, this 
menu pops up.
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Simulating a business
In this section, I take you through a slightly more complex type of simulation. It 
involves simulating a set of components and combining the simulated compo-
nents to produce a result. You might find it applicable in the real world, because 
the result is the bottom line for a business. Along the way, I show you a few new 
Excel skills.

The components you simulate add up to produce a net income. You’ll use an Excel 
tool called the Data Table to repeat the simulation 1,000 times. Figure 20-13 shows 
the worksheet you use.

What’s a Data Table? It’s a tool for What-If analysis (Windows and Mac, but not 
iPad). You use it to try out different values for formulas and show how changes in 
the values affect the formula’s result. It’s a natural fit for this example because 
the simulation provides different values for the components of a business’s bot-
tom line.

Let’s get started. Imagine that you have a publishing business and your average 
gross monthly income in thousands of dollars is in cell B2, your average produc-
tion costs are in C2, average marketing costs are in D2, and payroll is in E2. The 
corresponding standard deviation for each of these figures is in row 3.

FIGURE 20-13: 
The worksheet 

for the business 
simulation.
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I assume that these numbers are normally distributed. The first simulation is in 
row 5, labeled 1st Simulation in cell A5.

The first thing to do is generate a random number for Gross — meaning a number 
from a normal distribution whose mean is 160 and whose standard deviation is 15.

In cell B5, I type =NORM.INV(RAND(),B2,B3). The RAND function gives you a ran-
dom number between zero and one, and NORM.INV uses that as the probability, 
with B2 and B3 as the mean and standard deviation. I drag over to the right to 
autofill the remaining results.

What about net income? (The bottom line?) That’s just the gross income minus 
the sum of the costs. Accordingly, I type =B5-(C5+D5+E5) into cell G5. And that’s 
the result of the first simulation.

I define Result as the name for the range of cells J2 through J1001. That range 
(along with the range I2 through I1001) will be the data table, and Result will hold 
the results of the thousand simulations.

Before you run the simulation 1,000 times (and calculate the net amount each 
time), note the statistics you calculate after all the simulations are done.

B8 holds the probability of making a profit — that’s the proportion of times the 
net income is positive. In B8, I type =COUNTIF(Result,">0")/1000. Dividing by 
1,000 gives you the proportion of profit-outcomes.

The other statistics are pretty straightforward. Minimum in B10 is =MIN(Result), 
Maximum in B11 is = MAX(Result), Mean in B12 is = AVERAGE(Result), and Stan-
dard Deviation in B13 is = STDEV.S(Result). Ugly error messages appear in B12 
and B13 before you fire it all up, but that’s okay.

Time to fire up the simulations! As I mention earlier in this chapter, the range J2 
through J1001 will hold the results of the thousand simulations. The first simula-
tion comes from cell G5. So I type = G5 into J2.

Now I have to highlight the area that will be the data table. So I select I2 and, in 
the Name box (to the left of the Formula bar), while holding down the Shift key, I 
select Result. Then I scroll back to the top.

In the preceding step, the cell selection is I2, not J2. Remember that the Data Table 
is really I2 through J1001.

On the Data tab, in the Forecast area, you click on What-If Analysis and choose 
Data Table from the menu that appears. (See Figure 20-14.)
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This step opens the Data Table dialog box, shown in Figure 20-15.

In the Data Table dialog box, Row Input Cell doesn’t mean anything to you in this 
context, so leave it blank. Column Input Cell does mean something, but all you do 
here (believe it or not) is select a cell not in the range of the data table.

When you click OK, the Result range fills up with the results of 1,000 simulations!

The statistics fill in, too. You can see the minimum, maximum, mean, and stan-
dard deviation, and you can see the proportion of profit-outcomes. Each time you 
press F9 (or, on some keyboards, Fn+F9) or do something significant on the 
spreadsheet, the thousand simulations run again!

You can take a look at the distribution of the simulation outcomes. To highlight all 
thousand simulations, click J2, then hold down the Shift key and select Outcome in 
the name box. Then choose Insert | Charts and select Histogram. (See  Figure 20-16.) 
I leave it to you to modify the histogram to your liking. Of course, the histogram is 
dynamic, so it changes each time the simulations run.

FIGURE 20-14: 
Choosing What-If 

| Data Table.

FIGURE 20-15: 
The Data Table 

dialog box.
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To experiment with the simulations, you can change some of the input. Suppose 
you decide to increase marketing costs. Or maybe Payroll. Just remember that the 
assumption in this example is that the numbers are normally distributed. In some 
businesses, that assumption might not apply.

FIGURE 20-16: 
A histogram 

visualizes the 
1,000 simulation 

results.
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Chapter 21
Estimating Probability: 
Logistic Regression

In this chapter, I explore a type of regression that’s different from any regres-
sion analysis in Chapter 14. The regression you’ve already heard about involves 
a continuous dependent variable whose value you predict (in a linear way) from 

a continuous independent variable (or from a set of independent variables). You 
make that prediction on the basis of data on each independent variable.

In this new and different type of regression, the dependent variable is the proba-
bility of a “success” of a binary event — like, say, if a person decides to buy a 
product (success) or not (failure) after spending some time looking at an ad for 
the product. “Time spent looking at the ad” is the independent variable.

The goal is to estimate the probability of buying the product based on how much 
time the person looks at the ad. The dependent variable is continuous, but based 
on what you’ve learned about probability, you know it has a minimum value of 0 
and a maximum value of 1.

This is called logistic regression, and as you’ll see, it’s not linear.

IN THIS CHAPTER

 » Defining logistic regression

 » Checking out the XLMiner Analysis 
ToolPak

 » Working with logistic regression
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Working Your Way Through  
Logistic Regression

Table 21-1 shows data for 24 people. The first column shows the time (in seconds) 
each person spent looking at the ad, the second shows the outcome — whether 
they bought the product (1) or didn’t (0).

TABLE 21-1	 Time (in Seconds) Spent Looking at an Ad and Outcome  
(1 = Bought the Product, 0 = Did Not Buy the Product)

Seconds Outcome

10 0

12 0

15 0

17 0

22 0

23 0

23 1

24 1

25 0

28 1

30 0

33 1

35 0

36 0

38 1

40 0

42 0

45 1

47 1

50 1
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Because the only possible values for the dependent variable are 0 and 1, the scat-
terplot is unlike any you’ve seen. Figure 21-1 shows the scatterplot.

What would a graph of a logistic regression model look like? Intuitively, you might 
think it looks something like Figure 21-2, and you’d be right.

The function (that curved line) in Figure 21-2 is the solution to this equation:

ˆ
*

*
p e

e

a b Seconds

a b Seconds1

If you don’t know what e represents, read the section “Logarithmica Esoterica” in 
Chapter 23.

So logistic regression is all about finding values for a and b that result in the func-
tion that best fits the data. Let’s see how to do this in Excel.

Seconds Outcome

52 1

53 1

55 1

60 1

FIGURE 21-1: 
The scatterplot 
for the data in 

Table 21-1.
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Mining with XLMiner
Figure 21-3 shows a worksheet with the data in Table 21-1. For 24 people, column 
A shows the seconds each person spent looking at the ad, and column B shows 
whether the person bought the product (1) or not (0). In column D, I put the prob-
ability estimates you’re trying to find, and in column C I put an intermediate 
quantity that will help you compute them.

FIGURE 21-2: 
Logistic 

 regression model 
for the data in 

Table 21-1.

FIGURE 21-3: 
Worksheet with 

the data in 
Table 21-1.
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Someday, the Analysis ToolPak might offer a Logistic Regression tool. Today, 
unfortunately, isn’t that day. The good news, though, is that you can download 
the XLMiner Analysis ToolPak. (I mention it in Chapter 2.) It has everything the 
regular ToolPak has, plus a logistic regression capability. And it can be yours for 
the low, low price of $0.00. It works on Windows, Mac, and iPad.

To get the XLMiner version, start by choosing Insert | Add-Ins | Get Add-Ins from 
the main menu. Then, in the Office Add-Ins box, select Data Analytics, scroll 
down until you see XLMiner Analysis ToolPak, and click the Add button. (See  
Figure 21-4.) To add the XLMiner ToolPak in iPad Excel, tap Insert | Add-Ins | See 
All. Then look for XLMiner ToolPak and tap it.

Adding this ToolPak puts a Show ToolPak button on the extreme right end of the 
Home tab in both Windows and Mac (but not the iPad). Figure 21-5 shows the 
Show ToolPak button and the XLMiner Analysis ToolPak pane, which appears 
whenever you click the Show ToolPak button. (On the iPad, open the ToolPak by 
tapping Insert | Add-Ins and then tap XLMiner Analysis ToolPak in Recently Used 
Add-Ins. If you haven’t used it recently, you can find it in My Add-Ins.)

FIGURE 21-4: 
The XLMiner 

Analysis ToolPak 
in the Office 
Add-Ins box.
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Click (or on the iPad, tap) Logistic Regression to open the fields for the Y range, 
the X range, and the Output Range. (See Figure 21-6.)

For this app, you can’t select cells in the worksheet to enter them in the appropri-
ate field.

Instead, in the Y range box, I type B1:B25, and in the X range box I type A1:A25. 
Because the ranges include the headers, I make sure the Labels check box is 
checked. I don’t worry about Constant Is Zero, and I leave the Confidence Level 
box checked at 95%.

FIGURE 21-5: 
Clicking the Show 

ToolPak button 
opens the 

XLMiner Analysis 
ToolPak pane.

FIGURE 21-6: 
Select Logistic 

Regression in the 
XLMiner Analysis 
ToolPak pane to 

open the Logistic 
Regression box.
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In the Output Range box, I specify a cell for the output to start, like F2, and then 
click OK.

Figure 21-7 shows the completed Logistic Regression fields along with the output 
that appears after I click OK.

I don’t go into much detail about the output. The important numbers are the 
regression coefficients in G11 and G12. The value in G11 is the value for a in the 
logistic regression formula, and the value in G12 is the value for b. Their small 
P-values let you know they fit the data quite well.

Now for the estimated probabilities. In cell C2, I type = EXP($G$11 + $G$12*A2). 
The dollar signs are important, of course, because they anchor the values in cells 
G11 and G12 when I autofill the values in column C, which I do next.

These column C values are the numerators for the logistic regression formula. To 
calculate the probabilities in column D, in D2 I type = C2/(1+C2) and then autofill. 
I’d rather do it in two steps like this, rather than in one step, where I’d have to 
type that EXP function twice in one formula.

So, the estimated probabilities are in column D. The break-even point (where the 
probability is .50) appears to be around 34 seconds.

Figure 21-8 shows all the numerators and estimated probabilities.

As with any regression analysis, you can use the regression coefficients to make 
calculations for values not in the data set.

FIGURE 21-7: 
The completed 

Logistic 
 Regression fields 

and the output of 
logistic 

regression.
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To do this, I type Seconds in F16, Numerator in F17, and Probability in F18.

Then I type a value into G16, like 49.

In G17 I type = EXP(G11 + G12*G16), in G18 I type = G17/(1+G17), and then I 
press Enter to calculate the estimated probability. Now I can enter other values 
into G16 to calculate their probability estimates.

Just so you know, this is a huge leap forward. Before this app was available, logis-
tic regression in Excel was pretty involved: You had to complete more than a half-
dozen steps and use the Solver add-in.

I leave it as an exercise for you to use Excel’s graphics capabilities to create a chart 
like the one shown earlier, in Figure 21-2.

FIGURE 21-8: 
Numerators 

(column C) and 
estimated 

probabilities 
(column D) for 

the data in 
columns A and B.
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Chapter 22
Ten (12, Actually) 
Statistical and Graphical 
Tips and Traps

The world of statistics is full of pitfalls, but it’s also full of opportunities. 
Whether you’re a user of statistics or someone who has to interpret them, 
it’s possible to fall into the pitfalls. It’s also possible to walk around them. 

Here are 10 (okay, 12) tips and traps from the areas of hypothesis testing, regres-
sion, correlation, and graphs.

Significant Doesn’t Always  
Mean Important

As I say earlier in this book, significance is, in many ways, a poorly chosen term. 
When a statistical test yields a significant result and the decision is to reject H0, 
that doesn’t guarantee that the study behind the data is an important one. Statis-
tics can only help decision making about numbers and inferences about the 

IN THIS CHAPTER

 » Determining significance

 » Being wary of graphs

 » Being cautious with regression

 » Using concepts carefully

 » Using the iPad
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processes that produced them. They can’t make those processes important or 
earth shattering. Importance is something you have to judge for yourself — and 
no statistical test can do that for you.

Trying to Not Reject a Null Hypothesis Has 
a Number of Implications

Let me tell you a story: Some years ago, an industrial firm was trying to show that 
it was finally in compliance with environmental clean-up laws. The company took 
numerous measurements of the pollution in the body of water surrounding its 
factory, compared the measurements with a null hypothesis-generated set of 
expectations, and found that it couldn’t reject H0 with α = .05. The measurements 
didn’t differ significantly (there’s that word again) from “clean” water.

This, the company claimed, was evidence that it had cleaned up its act. Closer 
inspection revealed that the data approached significance, but the pollution was 
not quite of a high enough magnitude to reject H0. Does this mean that the com-
pany is not polluting?

Not at all. In striving to “prove” a null hypothesis, the company had stacked the 
deck in favor of itself. It set a high barrier to get over, didn’t clear it, and then 
patted itself on the back.

Every so often, it’s appropriate to try and not reject H0. When you set out on that 
path, be sure to set a high value of α (about .20–.30), so that small divergences 
from H0 cause rejection of H0. (I discuss this topic in Chapter 10, and I mention it 
in other parts of this book. I think it’s important enough to mention again here.)

Regression Isn’t Always Linear
When trying to fit a regression model to a scatterplot, the temptation is to imme-
diately use a line. This is the best-understood regression model, and when you get 
the hang of it, slopes and intercepts aren’t all that daunting.
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But linear regression isn’t the only kind of regression. It’s possible to fit a curve 
through a scatterplot. I won’t kid you: The statistical concepts behind curvilinear 
regression are more difficult to understand than the concepts behind linear 
regression.

It’s worth taking the time to master those concepts, however. Sometimes, a curve 
is a much better fit than a line. (This is partly a plug for Chapter 23, where I take 
you through curvilinear regression — and some of the concepts behind it.)

Extrapolating Beyond a Sample Scatterplot 
Is a Bad Idea

Whether you’re working with linear regression or curvilinear regression, keep in 
mind that it’s inappropriate to generalize beyond the boundaries of the 
scatterplot.

Suppose that you’ve established a solid predictive relationship between a test of 
mathematics aptitude and performance in mathematics courses, and your scat-
terplot covers only a narrow range of mathematics aptitude. You have no way of 
knowing whether the relationship holds up beyond that range. Predictions outside 
that range aren’t valid.

Your best bet is to expand the scatterplot by testing more people. You might find 
that the original relationship tells only part of the story.

Examine the Variability Around a 
Regression Line

Careful analysis of residuals (the differences between observed and predicted val-
ues) can tell you a lot about how well the line fits the data. A foundational assump-
tion is that variability around a regression line is the same up and down the line. 
If it isn’t, the model might not be as predictive as you think. If the variability is 
systematic (greater variability at one end than at the other), curvilinear regression 
might be more appropriate than linear. The standard error of estimate won’t 
always be the indicator.
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A Sample Can Be Too Large
Believe it or not, this sometimes happens with correlation coefficients. A very 
large sample can make a small correlation coefficient statistically significant. For 
example, with 100 degrees of freedom and α = .05, a correlation coefficient of .195 
is cause for rejecting the null hypothesis that the population correlation coeffi-
cient is equal to zero.

But what does that correlation coefficient really mean? The coefficient of  
determination  — r2  — is just .038, meaning that the SSRegression is less than  
4 percent of the SSTotal. (See Chapter 15.) That’s a very small association.

Bottom line: When looking at a correlation coefficient, be aware of the sample 
size. If it’s large enough, it can make a trivial association turn out statistically 
significant. (Hmm — significance. There it is again!)

Consumers: Know Your Axes
When you look at a graph, make sure you know what’s on each axis. Make sure 
you understand the units of measure. Do you understand the independent vari-
able? Do you understand the dependent variable? Can you describe each one in 
your own words? If the answer to any of these questions is no, you don’t under-
stand the graph you’re looking at.

When looking at a graph in a TV ad, be wary if it disappears too quickly, before you 
can see what’s on the axes. The advertiser may be trying to create a lingering false 
impression about a bogus relationship inside the graph. The graphed relationship 
might be as valid as that other staple of TV advertising — scientific proof via ani-
mated cartoon: Tiny animated scrub brushes cleaning cartoon teeth might not 
necessarily guarantee whiter teeth for you if you buy the product. (I know that’s 
off topic, but I had to get it in.)
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Graphing a Categorical Variable as a 
Quantitative Variable Is Just Plain Wrong

So, you’re just about ready to compete in the World Series of rock-paper-scissors. 
In preparation for this international tournament, you’ve tallied all your matches 
from the past ten years, listing the percentage of times you won when you played 
each role.

To summarize all the outcomes, you’re about to use Excel’s graphics capabilities 
to create a graph. One thing’s sure: Whatever your preference rock-paper- 
scissors-wise, the graph absolutely, positively had better not look like 
Figure 22-1.

So many people create these kinds of graphs — people who should know better. 
The line in the graph implies continuity from one point to another. With these 
data, of course, that’s impossible. What’s between rock and paper? Why are they 
equal units apart? Why are the three categories in that order? (Can you tell that 
this is my pet peeve?)

Simply put, a line graph is not the proper graph when at least one of the variables 
is a set of categories. Instead, create a column graph. A pie chart works here, too, 
because the data are percentages and you have just a few slices. (See Chapter 3 for 
Yogi Berra’s pie slice guidelines.)

When I wrote the first edition of this book, I whimsically came up with the idea of 
a rock-paper-scissors World Series for this example. Then I found out — there 
really is one! (The World RPS Society puts it on.)

FIGURE 22-1: 
Absolutely the 
wrong way to 

graph categorical 
data.
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Whenever Appropriate, Include Variability 
in Your Graph

When the points in your graph represent means, make sure that the graph includes 
the standard error of each mean. This gives the viewer an idea of the variability in 
the data  — which is an important aspect of the data. Here’s another plug: In 
Chapter 23, I show you how to do that in Excel.

Means by themselves don’t always tell you the whole story. Take every opportu-
nity to examine variances and standard deviations. You may find some hidden 
nuggets. Systematic variation  — high values of variance associated with large 
means, for example — might be a clue about a relationship you didn’t see before.

Be Careful When Relating Statistics 
Textbook Concepts to Excel

If you’re serious about doing statistical work, you’ll probably have occasion to 
look into a statistics textbook or two. Bear in mind that the symbols in some areas 
of statistics aren’t standard: For example, some texts use M rather than x  to rep-
resent the sample mean, and some represent a deviation from the mean as just x.

Connecting textbook concepts to Excel’s statistical functions can be a challenge 
because of the textbooks and because of Excel. Messages in dialog boxes and in 
Help files might contain symbols other than the ones you read about, or they 
might use the same symbols but in a different way. This discrepancy might lead 
you to make an incorrect entry into a parameter in a dialog box, resulting in an 
error that’s hard to trace.

It’s Always a Good Idea to Use Named 
Ranges in Excel

I emphasize this point early on and throughout this book. Named ranges make it 
easier to write formulas and to read them. A human being who happens to not be 
you might have to read your spreadsheet and make sense of it. Named ranges 
make that easier to do. Also, a human being who does happen to be you might have 
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to read your spreadsheet a long time after its creation. Named ranges make it 
easier for you to remember what you were doing and why.

This practice is a good idea for another reason. If you’re planning to learn a sta-
tistically oriented language like R, you’ll find that formulas in R often involve 
named items called vectors that are similar to named ranges in Excel. Naming 
ranges on your spreadsheets helps you make the transition.

Statistical Analysis with Excel on the iPad 
Is Pretty Good!

Some might say that much is missing from the iPad version of Excel, and that 
Microsoft made compromises to put Excel on that platform. Though it’s true that 
you won’t find What-If analyses or extensive graphics capabilities on the iPad, 
what you will find represents — in my view — not compromise but evolution.

For example, not having dialog boxes is just fine: iPad Excel offers contextual 
menus that do pretty much the same thing. No Analysis ToolPak? StatPlus (free 
version) and XLMiner do the trick. Indeed, they turn the iPad into a statistics 
beast. (Even if you don’t own an iPad, you ought to try those two on your Mac or 
on your Windows PC.) The XLMiner Analysis ToolPak’s accordion-style pane rep-
resents where I think user interfaces for tools are headed. (Check it out in 
Chapter 21.)
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Chapter 23
Ten Topics (Thirteen, 
Actually) That Just Don’t 
Fit Elsewhere

I wrote this book to show you all of Excel’s statistical capabilities. My intent was 
to tell you about them in the context of the world of statistics, and I had a defi-
nite path in mind.

Some of the capabilities don’t neatly fit along that path. I still want you to be 
aware of them, however, so here they are.

Graphing the Standard Error of the Mean
When you create a graph and your data are means, it’s a good idea to include the 
standard error of each mean in your graph. This gives the viewer an idea of the 
spread of scores around each mean.

IN THIS CHAPTER

 » Visualizing variability

 » Going over the odds and ends of 
probability

 » Drawing samples

 » Looking for independence

 » Working with logs

 » Sorting
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Figure 23-1 gives an example where this situation arises. The data are (fictional) 
test scores for four groups of people. Each column header indicates the amount of 
preparation time for the eight people within the group. I used Excel’s graphics 
capabilities (refer to Chapter 3) to draw the graph. Because the independent vari-
able is quantitative, a line graph is appropriate. (Refer to Chapter 22 for a rant on 
my biggest peeve.)

For each group, I used AVERAGE to calculate the mean and STDEV.S to calculate the 
standard deviation. I also calculated the standard error of each mean. I selected 
cell B12, so the formula box shows you that I calculated the standard error for 
Column B via this formula:

=B11/SQRT(COUNT(B2:B9))

The trick is to get each standard error into the graph. Begin by selecting the graph. 
This causes the Chart Design and Format tabs to appear. Choose Chart Design | 
Add Chart Element | Error Bars | More Error Bars Options on this tab. (Figure 23-2 
shows what I mean.)

On the Error Bars menu, you have to be careful: One selection is Standard Error. 
Avoid it. If you think this selection tells Excel to put the standard error of each 
mean on the graph, rest assured that Excel has absolutely no idea of what you’re 
talking about. For this selection, Excel calculates the standard error of the set of 
four means — not the standard error within each group.

FIGURE 23-1: 
Four groups 

along with their 
means, standard 

deviations, and 
standard errors. 

The graph shows 
the group means.



CHAPTER 23  Ten Topics (Thirteen, Actually) That Just Don’t Fit Elsewhere      477

More Error Bar Options is the appropriate choice. This opens the Format Error 
Bars pane. (See Figure 23-3.)

In the Direction area of the pane, select the Both radio button, and in the End Style 
area, select the Cap radio button.

FIGURE 23-2: 
The menu path 

for inserting error 
bars.

FIGURE 23-3: 
The Format Error 

Bars pane.
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Remember the cautionary note I gave you a moment ago? I have a similar one 
here. One selection in the Error Amount area is Standard Error. Avoid this one, too. 
It doesn’t tell Excel to put the standard error of each mean on the graph.

Scroll down to the Error Amount area and select the Custom radio button. This 
activates the Specify Value button. Click that button to open the Custom Error Bars 
dialog box, shown in Figure 23-4. With the cursor in the Positive Error Value box, 
select the cell range that holds the standard errors ($B$12:$E$12). Tab to the Neg-
ative Error Value box and do the same.

That Negative Error Value box might give you a little trouble. Make sure it’s 
cleared of any default values before you enter the cell range.

Click OK in the Custom Error Bars dialog box and close the Format Error Bars 
pane, and the graph looks like Figure 23-5.

FIGURE 23-4: 
The Custom Error 

Bars dialog box.

FIGURE 23-5: 
The graph of the 

group means, 
including the 

standard error of 
each mean.
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Probabilities and Distributions
Here are some probability related worksheet functions. Although they’re a little 
on the esoteric side, you might find some use for them.

PROB
If you have a probability distribution of a discrete random variable and you want 
to find the probability that the variable takes on a particular value, PROB is for you. 
Figure  23-6 shows the PROB Argument Functions dialog box along with a 
distribution.

You supply the random variable (X_range), the probabilities (Prob_range), a 
lower limit, and an upper limit. PROB returns the probability that the random vari-
able takes on a value between those limits (inclusive).

If you leave Upper Limit blank, PROB returns the probability of the value you gave 
for the lower limit. If you leave Lower Limit blank, PROB returns the probability of 
obtaining, at most, the upper limit (for example, the cumulative probability).

WEIBULL.DIST
This is a probability density function that’s mostly applicable to engineering. It 
serves as a model for the time until a physical system fails. As engineers know, in 
some systems, the number of failures stays the same over time because shocks to 
the system cause failure. In others, like some microelectronic components, the 
number of failures decreases with time. In still others, wear-and-tear increases 
failures with time.

FIGURE 23-6: 
The PROB 

Function 
Arguments dialog 

box and a 
probability 

distribution.
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The Weibull distribution’s two parameters allow it to reflect all these possibilities. 
One parameter, Alpha, determines how wide or narrow the distribution is. The 
other, Beta, determines where it’s centered on the x-axis.

The Weibull probability density function is a rather complicated equation. Thanks 
to Excel, you don’t have to worry about it. Figure 23-7 shows WEIBULL.DIST’s 
Function Arguments dialog box.

The dialog box in the figure answers the kind of question a product engineer 
would ask: Assume the time to failure of a bulb in an LCD projector follows a 
Weibull distribution with Alpha = .75 and Beta = 2,000 hours. What’s the proba-
bility that the bulb lasts at most 4,000 hours? The dialog box shows that the 
answer is .814.

Drawing Samples
Excel’s Sampling data analysis tool is helpful for creating samples. To open it 
choose Data | Data Analysis | Sampling.

You can tailor this tool in a couple of ways. If you’re trying to put together a focus 
group, and you have to select the participants from a pool of people, you can 
assign each one a number and have the Sampling tool select your group.

One way to select is periodically. You supply n and Excel samples every nth number. 
The other way to select is randomly. You supply the number of individuals you 
want randomly selected and Excel does the rest.

FIGURE 23-7: 
The WEIBULL.
DIST Function 

Arguments 
dialog box.
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Figure 23-8 presents the Sampling dialog box, three groups I had it sample from, 
and two columns of output.

The first output column, Column A, shows the results of periodic sampling with a 
period of 6. Sampling begins with the sixth score in Group 1. Excel then counts out 
scores and delivers the sixth and repeats that process again until it finishes in the 
last group. The periodic sampling process, as you can see, doesn’t recycle. I sup-
plied an output range up to cell A11, but Excel stopped after four numbers.

The second output column, Column B, shows the results of random sampling. I 
asked for 20 and that’s what I got. If you closely examine the numbers in Column 
B, you see that the random sampling process can select a number more than once.

Beware of a little quirk: The Labels check box seems to have no effect. When I 
specified an input range that includes C1, D1, and E1 and selected the Labels check 
box, I received this error message: Sampling - Input range contains non-
numeric data. Not a showstopper, but a little annoying.

Testing Independence: The True Use of 
CHISQ.TEST

In Chapter 20, I show you how to use CHISQ.TEST to test the goodness of fit of a 
model to a set of data. In that chapter, I also warn you about the pitfalls of using this 
function in that context, and I mention that it’s really intended for something else.

FIGURE 23-8: 
The Sampling 

data-analysis tool 
dialog box, 

sampled groups, 
and results.
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Here’s the something else. Imagine you’ve surveyed a total of 200 people. Each 
person lives in a rural area, an urban area, or a suburb. Your survey asked them 
their favorite type of movie: drama, comedy, or animation. You want to know if 
their movie preference is independent of the environment in which they live.

Table 23-1 shows the results.

The number in each cell represents the number of people in the environment, 
indicated in the row, who prefer the type of movie indicated in the column.

Do the data show that preference is independent of environment? This calls for a 
hypothesis test:

H0: Movie preference is independent of environment

H1: Not H0

α= .05

To get this done, you have to know what to expect if the two are independent. 
Then you can compare the data with the expected numbers and see whether they 
match. If they do, you can’t reject H0. If they don’t, you reject H0.

Concepts from probability help determine the expected data. In Chapter 18, I tell 
you that if two events are independent, you multiply their probabilities to find the 
probability that they occur together. Here, you can treat the tabled numbers as 
proportions and treat the proportions as probabilities.

For example, in your sample, the probability is 80/200 that a person is from a 
rural environment. The probability is 70/200 that a person prefers drama. What’s 
the probability that a person is in the category “rural and likes drama”? If the 
environment and preference are independent, that’s (80/200) × (70/200). To turn 
that probability into an expected number of people, you multiply it by the total 

TABLE 23-1	 Living Environment and Movie Preference
Drama Comedy Animation Total

Rural 40 30 10 80

Urban 20 30 20 70

Suburban 10 20 20 50

Total 70 80 50 200
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number of people in the sample: 200. So the expected number of people is (80 × 
70)/200, which is 28. In general,

Expected Number in a Cell RowTotal ColumnTotal
Total

After you have the expected numbers, you compare them to the observed numbers 
(the data) via this formula:

2 Observed-Expected
Expected

2

You test the result against a χ2 (chi-square) distribution with df = (Number of 
Rows – 1) × (Number of Columns – 1), which in this case comes out to 4.

The CHISQ.TEST worksheet function performs the test. You supply the observed 
numbers and the expected numbers, and CHISQ.TEST returns the probability that 
a χ2 at least as high as the result from the preceding formula could have resulted 
if the two types of categories are independent. If the probability is small (less than 
.05), reject H0. If not, don’t reject. CHISQ.TEST doesn’t return a value of χ2; it just 
returns the probability (under a χ2 distribution with the correct df).

Figure  23-9 shows a worksheet with both the observed data and the expected 
numbers, along with CHISQ.TEST’s Function Arguments dialog box. Before I ran 
CHISQ.TEST, I attached the name Observed to C3:E5, and the name Expected to 
C10:E12. (If you don’t know how to do this, read Chapter 2.)

The figure shows that I’ve entered Observed into the Actual_range box and 
entered Expected into the Expected_range box. The dialog box shows a very small 
probability, .00068, so the decision is to reject H0. The data are consistent with the 
idea that movie preference is not independent of environment.

FIGURE 23-9: 
The CHISQ.TEST 

Function 
Arguments dialog 

box, with 
observed data 
and expected 

numbers.
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Logarithmica Esoterica
The functions in this section are really out there. Unless you’re a tech-head, you’ll 
probably never use them. I present them for completeness. You might run into 
them while you’re wandering through Excel’s statistical functions and wonder 
what they are.

They’re based on what mathematicians call natural logarithms, which in turn are 
based on e, that constant I use at various points throughout this book. I begin with 
a brief discussion of logarithms, and then I turn to e. (By the way, all this is rele-
vant to logistic regression, which I cover in Chapter 21.)

What is a logarithm?
Plain and simple, a logarithm is an exponent — a power to which you raise a num-
ber. In the equation

10 1002

2 is an exponent. Does that mean that 2 is also a logarithm? Well . . . yes. In terms 
of logarithms,

log10 100 2

That’s really just another way of saying 102 = 100. Mathematicians read it as “the 
logarithm of 100 to the base 10 equals 2.” It means that if you want to raise 10 to 
some power to get 100, that power is 2.

How about 1,000? As you know

10 10003

so

log10 1000 3

How about 453? . . . Hmm . . . . That’s like trying to solve

10 453x

What could that answer possibly be? 102 means 10 × 10, and that gives you 100. 103 
means 10 × 10 × 10 and that’s 1,000. But 453?

Here’s where you have to think outside the dialog box. You have to imagine expo-
nents that aren’t whole numbers. I know, I know: How can you multiply a number 
by itself a fraction at a time? If you could, somehow, the number in that 453 equa-
tion would have to be between 2 (which gets you to 100) and 3 (which gets you to 
1,000).
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In the 16th century, the mathematician John Napier showed how to do it, and 
logarithms were born. Why did Napier bother with this? One reason is that it was 
a great help to astronomers. Astronomers have to deal with numbers that are, 
well, astronomical. Logarithms ease computational strain in a couple of ways. One 
way is to substitute small numbers for large ones: The logarithm of 1,000,000 is 
6, and the logarithm of 100,000,000 is 8. Also, working with logarithms opens up 
a helpful set of computational shortcuts. Before calculators and computers 
appeared on the scene, this was a very big deal.

Incidentally,

10 4532 6560982.

meaning that

log .10 453 2 6560982

You can use Excel to check that out if you don’t believe me. Select a cell and type

=LOG(453,10)

Press Enter and watch what happens. Then, just to close the loop, reverse the 
process. If your selected cell is — let’s say — D3, select another cell and type

=POWER(10,D3)

or

=10^D3

Either way, the result is 453.

Ten, the number that’s raised to the exponent, is called the base. Because it’s also 
the base of our number system and we’re all familiar with it, logarithms of base 
10 are called common logarithms.

Does that mean you can have other bases? Absolutely. Any number (except 0 or 1 
or a negative number) can be a base. For example,

6 4 40 962. .

So

log ..6 4 40 96 2
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If you ever see log without a base, base 10 is understood, so

log100 2

In terms of bases, one number is special. . . .

What is e?
Which brings me to e, a constant that’s all about growth. Before I get back to loga-
rithms, I tell you about e.

Imagine the princely sum of $1 deposited in a bank account. Suppose that the 
interest rate is 2 percent a year. (Good luck with that.) If it’s simple interest, the 
bank adds $.02 every year, and in 50 years you have $2.

If it’s compound interest, at the end of 50 years you have (1 + .02)50 — which is 
just a bit more than $2.68, assuming that the bank compounds the interest once 
a year.

Of course, if the bank compounds it twice a year, each payment is $.01, and after 
50 years the bank has compounded it 100 times. That gives you (1 + .01)100, or just 
over $2.70. What about compounding it four times a year? After 50 years — 200 
compoundings  — you have (1 + .005)200, which results in the don’t-spend-it- 
all-in-one-place amount of $2.71 and a tiny bit more.

Focusing on “just a bit more” and a “tiny bit more,” and taking it to extremes, 
after 100,000 compoundings, you have $2.718268. After 100 million, you have 
$2.718282.

If you could get the bank to compound many more times in those 50 years, your 
sum of money approaches a limit — an amount it gets ever so close to but never 
quite reaches. That limit is e.

The way I set up the example, the rule for calculating the amount is

1 1
n

n

where n represents the number of payments. Two cents is 1/50th of a dollar and I 
specified 50 years — 50 payments. Then I specified two payments per year (and 
each year’s payments have to add up to 2 percent) so that in 50 years you have 100 
payments of 1/100th of a dollar, and so on.
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To see this concept in action, enter numbers into a column of a spreadsheet, as I 
have in Figure 23-10. In cells C2 through C20, I have the numbers 1 through 10 and 
then selected steps through 100 million. In D2, I put the formula

=(1+(1/C2))^C2

and then autofilled to D20. The entry in D20 is very close to e.

Mathematicians can tell you another way to get to e:

e 1 1
1

1
2

1
3

1
4! ! ! !

...

Those exclamation points signify factorial. 1! = 1, 2! = 2 X 1, 3! = 3 X 2 X 1. (For more 
on factorials, refer to Chapter 18.)

Excel helps visualize this one, too. Figure  23-11 lays out a spreadsheet with 
selected numbers up to 170 in Column C. In D2, I put this formula:

=1+ 1/FACT(C2)

and, as the Formula bar in the figure shows, in D3 I put this one:

=D2 +1/ FACT(C3)

FIGURE 23-10: 
Getting to e.
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Then I autofilled up to D17. The entry in D17 is very close to e. In fact, from D11 on, 
you see no change, even if you increase the number of decimal places.

Why did I stop at 170? Because that takes Excel to the max. At 171, you get an error 
message.

So e is associated with growth. Its value is 2.781828 . . . The three dots mean you 
never quite get to the exact value (like π, the constant that enables you to find the 
area of a circle).

This number pops up in all kinds of places. It’s in the formula for the normal dis-
tribution (see Chapter 8), and it’s in distributions I discuss in Chapter 19. Many 
natural phenomena are related to e.

It’s so important that scientists, mathematicians, and business analysts use it as 
the base for logarithms. Logarithms to the base e are called natural logarithms. A 
natural logarithm is abbreviated as ln.

Table 23-2 presents some comparisons (rounded to three decimal places) between 
common logarithms and natural logarithms:

One more thing. In many formulas and equations, it’s often necessary to raise e to 
a power. Sometimes the power is a fairly complicated mathematical expression. 
Because superscripts are usually printed in small font, it can be a strain to have to 
constantly read them. To ease the eyestrain, mathematicians have invented a spe-
cial notation: exp. Whenever you see exp followed by something in parentheses, it 
means to raise e to the power of whatever’s in the parentheses. For example,

exp . ..1 6 4 9531 6e

FIGURE 23-11: 
Another path to e.
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Excel’s EXP function does that calculation for you.

Speaking of raising e, when Google, Inc., filed its IPO, it said it wanted to raise 
$2,718,281,828, which is e times a billion dollars rounded to the nearest dollar.

On to the Excel functions.

LOGNORM.DIST
A random variable is said to be lognormally distributed if its natural logarithm is 
normally distributed. Maybe the name is a little misleading, because I just said log 
means “common logarithm” and ln means “natural logarithm.”

Unlike the normal distribution, the lognormal can’t have a negative number as a 
possible value for the variable. Also, unlike the normal, the lognormal is not  
symmetric — it’s skewed to the right.

Like the Weibull distribution I describe earlier, engineers use the lognormal to 
model the breakdown of physical systems — particularly of the wear-and-tear 
variety. Here’s where the large-numbers-to-small numbers property of loga-
rithms comes into play. When huge numbers of hours figure into a system’s life 
cycle, it’s easier to think about the distribution of logarithms than the distribution 
of the hours.

Excel’s LOGNORM.DIST works with the lognormal distribution. You specify a value, 
a mean, and a standard deviation for the lognormal. LOGNORM.DIST returns the 
probability that the variable is, at most, that value.

TABLE 23-2	 Some Common Logarithms (Log) and Natural  
Logarithms (Ln)

Number Log Ln

e 0.434 1.000

10 1.000 2.303

50 1.699 3.912

100 2.000 4.605

453 2.656 6.116

1000 3.000 6.908
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For example, FarKlempt Robotics, Inc., has gathered extensive hours-to-failure 
data on a universal joint component that goes into its robots. The company finds 
that hours-to-failure is lognormally distributed with a mean of 10 and a standard 
deviation of 2.5. What is the probability that this component fails in, at most, 
10,000 hours?

Figure 23-12 shows the LOGNORM.DIST Function Arguments dialog box for this 
example. In the X box, I entered ln(10000). I entered 10 into the Mean box, 2.5 into 
the Standard_dev box, and TRUE into the Cumulative box. The dialog box shows 
the answer, .000929 (and some more decimals). If I enter FALSE into the Cumula-
tive box, the function returns the probability density (the height of the function) 
at the value in the X box.

LOGNORM.INV
LOGNORM.INV turns LOGNORM.DIST around. You supply a probability, a mean, and 
a standard deviation for a lognormal distribution. LOGNORM.INV gives you the 
value of the random variable that cuts off that probability.

To find the value that cuts off .001 in the preceding example’s distribution, I used 
the LOGNORM.INV Function Arguments dialog box shown in Figure 23-13. With 
the indicated entries, the dialog box shows that the value is 9.722 (and more 
decimals).

By the way, in terms of hours, that’s 16,685 — just for .001.

FIGURE 23-12: 
The LOGNORM.

DIST Function 
Arguments 
dialog box.
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Array Function: LOGEST
In Chapter 14, I tell you all about linear regression. It’s also possible to have a 
relationship between two variables that’s curvilinear rather than linear.

The equation for a line that fits a scatterplot is

y a bx’

One way to fit a curve through a scatterplot is with this equation:

y aebx’

LOGEST estimates a and b for this curvilinear equation. Figure 23-14 shows the 
LOGEST Function Arguments dialog box and the data for this example. It also 
shows the selected cell to start the output array. Before using this function, I 
attached the name x to B2:B12 and y to C2:C12.

FIGURE 23-13: 
The LOGNORM.

INV Function 
Arguments 
dialog box.

FIGURE 23-14: 
The Function 

Arguments dialog 
box for LOGEST, 

along with the 
data and the 

selected cell to 
start the output 

array.
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Here are the steps for this function:

1. With the data entered, select a cell to start LOGEST’s output array.

I selected F2.

2. From the Statistical Functions menu, select LOGEST to open the Function 
Arguments dialog box for LOGEST.

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the Known_y’s box, type the cell range that holds the scores for the  
y-variable. For this example, that’s y (the name I gave to C2:C12).

In the Known_x’s box, type the cell range that holds the scores for the  
x-variable. For this example, it’s x (the name I gave to B2:B12).

In the Const box, the choices are TRUE (or leave it blank) to calculate the value 
of a in the curvilinear equation I showed you or FALSE to set a to 1. I typed 
TRUE.

The dialog box uses b where I use a. No set of symbols is standard.

In the Stats box, the choices are TRUE to return the regression statistics in 
addition to a and b and FALSE (or leave it blank) to return just a and b. I typed 
TRUE.

Again, the dialog box uses b where I use a and m-coefficient where I use b.

4. Click OK to put LOGEST’s answers into the output array.

Figure 23-15 shows LOGEST’s results. They’re not labeled in any way, so I added 
the labels for you in the worksheet. The left column gives you the exp(b) (more on 
that in a moment), standard error of b, R Square, F, and the SSregression. The right 
column provides a, standard error of a, standard error of estimate, degrees of 
freedom, and SSresidual. For more on these statistics, refer to Chapters 14 and 15.

FIGURE 23-15: 
LOGEST’s results 

in the output 
array.
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About exp(b). LOGEST, unfortunately, doesn’t return the value of b — the exponent 
for the curvilinear equation. To find the exponent, you have to calculate the natu-
ral logarithm of what it does return. Applying Excel’s LN worksheet function here 
gives 0.0256 as the value of the exponent.

So, the curvilinear regression equation for the sample data is

y e x’ . .4 1718 0 0256

or in that exp notation I told you about:

y x’ . exp .4 1718 0 0256

A good way to help yourself understand all this is to use Excel’s graphics capabili-
ties to create a scatterplot. (See Chapter 3.) Then right-click on a data point in the 
plot and choose Add Trendline from the pop-up menu. This action adds a linear 
trendline to the scatterplot and, more importantly, opens the Format Trendline 
pane. (See Figure 23-16.) Select the Exponential radio button, as I’ve done in the 
figure. Also, as I’ve done in the figure, toward the bottom of the pane, select the 
Display Equation on Chart check box.

FIGURE 23-16: 
The Format 

Trendline panel.
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Click Close, and you have a scatterplot complete with curve and equation.  
I reformatted mine in several ways to make it look clearer on the printed page. 
Figure 23-17 shows the result.

Array Function: GROWTH
GROWTH is curvilinear regression’s answer to TREND. (See Chapter 14.) You can use 
this function in two ways: to predict a set of y-values for the x-values in your 
sample or to predict a set of y-values for a new set of x-values.

Predicting y’s for the x’s in your sample
Figure  23-18 shows GROWTH set up to calculate y’s for the x’s I already have. I 
included the Formula bar in this screen shot so that you can see what the formula 
looks like for this use of GROWTH.

FIGURE 23-17: 
The scatterplot, 
with curve and 

equation.

FIGURE 23-18: 
The Function 

Arguments dialog 
box for GROWTH 

along with the 
sample data. 

GROWTH is set 
up to predict x’s 

for the sample y’s.
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Here are the steps:

1. With the data entered, select a cell to start the output array for GROWTH’s 
answers.

I selected D2 to put the predicted y’s right next to the sample y’s.

2. From the Statistical Functions menu, select GROWTH to open the 
Function Arguments dialog box for GROWTH.

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the Known_y’s box, type the cell range that holds the scores for the  
y-variable. For this example, that’s y (the name I gave to C2:C12).

In the Known_x’s box, type the cell range that holds the scores for the  
x-variable. For this example, it’s x (the name I gave to B2:B12).

I’m not calculating values for new x’s here, so I leave the New_x’s box blank.

In the Const box, the choices are TRUE (or leave it blank) to calculate a, or 
FALSE to set a to 1. I entered TRUE. (I really don’t know why you’d enter FALSE.) 
Once again, the dialog box uses b where I use a.

4. Click OK to put GROWTH’s answers into the output array.

Figure 23-19 shows the answers in D2:D12.

Predicting a new set of y’s for a new set of x’s
Here, I use GROWTH to predict y’s for a new set of x’s. Figure 23-20 shows GROWTH 
set up for this. In addition to the array named x and the array named y, I defined 
New_x as the name for B15:B22, the cell range that holds the new set of x’s.

FIGURE 23-19: 
The results of 

GROWTH: 
Predicted y’s for 

the sample x’s.
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Figure 23-20 also shows the selected array of cells for the results. Once again, I 
included the Formula bar to show you the formula for this use of the function.

To do this, follow these steps:

1. With the data entered, select a cell to start the output array for GROWTH’s 
answers.

I selected C15.

2. From the Statistical Functions menu, select GROWTH to open the 
Function Arguments dialog box for GROWTH.

3. In the Function Arguments dialog box, type the appropriate values for 
the arguments.

In the Known_y’s box, enter the cell range that holds the scores for the 
y-variable. For this example, that’s y (the name I gave to C2:C12).

In the Known_x’s box, enter the cell range that holds the scores for the 
x-variable. For this example, it’s x (the name I gave to B2:B12).

In the New_x’s box, enter the cell range that holds the new scores for the 
x-variable. That’s New_x (the name I gave to B15:B22).

In the Const box, the choices are TRUE (or leave it blank) to calculate a, or 
FALSE to set a to 1. I typed TRUE. (Again, I really don’t know why you’d enter 
FALSE.)

FIGURE 23-20: 
The Function 

Arguments dialog 
box for GROWTH 

along with data. 
GROWTH is set up 

to predict y’s for a 
new set of x’s.
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4. Click OK to put GROWTH’s answers into the output array.

Figure 23-21 shows the answers in C15:C22.

The logs of Gamma
Sounds like a science fiction thriller, doesn’t it?

The GAMMA function I discuss in Chapter 19 extends factorials to the realm of non-
whole numbers. Because factorials are involved, the numbers can grow very large, 
very quickly. Logarithms are an antidote.

The worksheet function GAMMALN.PRECISE finds the natural log of the gamma 
function value of the argument x.

FIGURE 23-21: 
The results of 

GROWTH —  
 predicted y’s for a 

new set of x’s.
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It looks like this:

=GAMMALN.PRECISE(5.3)

It’s equivalent to

=LN(GAMMA(5.3))

The answer, by the way, is 3.64.

Sorting Data
In behavioral science experiments, researchers typically present a variety of tasks 
for participants to complete. The conditions of the tasks are the independent vari-
ables. Measures of performance on these tasks are the dependent variables.

For methodological reasons, the conditions and order of the tasks are randomized 
so that different people complete the tasks in different orders. The data reflect 
these orders. To analyze the data, it becomes necessary to sort everyone’s data 
into the same order.

The worksheet in Figure 23-22 shows data for one participant in one experiment. 
Width and Distance are independent variables; Moves and Errors are dependent 
variables. The objective is to sort the rows in increasing order of width and then in 
increasing order of distance.

Here’s how to do it:

1. Select the cell range that holds the data.

For this example, that’s B2:E9.

FIGURE 23-22: 
Unsorted data.
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2. Select Data | Sort.

This step opens the Sort dialog box, shown in Figure 23-23. When the dialog 
box opens, it shows just one row under Column. The row is labeled Sort By. 
Because I have headers in my data, I checked My Data Has Headers check box.

3. From the drop-down menu in the box next to Sort By, select the first 
variable to sort by. Adjust the settings in the Sort On dropdown list and in 
the Order dropdown list as needed.

I selected Width and kept the default conditions for Sort On (Cell Values) and 
Order (Smallest to Largest).

4. Click the Add Level button.

This step opens another row labeled Then By.

5. In the drop-down menu in the box next to Then By, select the next 
variable to sort by and then adjust the Sort On setting and the Order 
setting.

I selected Distance and kept the default conditions.

6. After the last variable, click OK.

The sorted data appear in Figure 23-24.

FIGURE 23-23: 
The Sort 

dialog box.

FIGURE 23-24: 
The data sorted 

by width and 
distance.
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When Your Data Live 
Elsewhere

Every so often, you have occasion to analyze data that originate outside your 
computer. Sometimes, those data are already in spreadsheets. For example, 
census.gov provides data in Excel files. In that case, you just download the 

data.

It’s not always that straightforward — but it’s still pretty easy, thanks to Micro-
soft 365. First, you open the Data tab. Then, in the Get & Transform Data area, you 
select a general category (like Web, Text, or CSV). You navigate to the target and 
then follow some steps in a dialog box to load the data into a worksheet — and 
that’s pretty much it.

I illustrate by importing data from the web. With the Data tab open, in the Get & 
Transform Data area on the left, I select From Web. Figure A-1 shows you what I 
mean.

In this example, I import the well-known Iris data set from Wikipedia. It’s well-
known because many aspiring data scientists work with this data set to acquire 
skills in machine learning. But that’s a story for another day, and for another 
book. (Shameless plug: That other book is R Projects For Dummies, written by me 
and published by Wiley.)

IN THIS APPENDIX

 » Importing data

 » Following the process

 » Getting data from the web

Appendix A
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After I click From Web, the From Web dialog box opens. In the URL box, I type 
https://en.wikipedia.org/wiki/Iris_flower_data_set.

Figure A-2 shows the appearance of the Web dialog box with this URL.

With the default Basic radio button selected, I click OK to open the Navigator dia-
log box. (See Figure A-3.)

As Figure A-3 shows, the left pane of this dialog box provides a helpful list of 
tables you can preview in the right pane (in Table view) before you download. The 
left pane’s Select Multiple Items check box enables you to select more than one 
table. (I work with only one in this example.) In the right pane, the Web View tab 
shows what the web page looks like. Here I work with the default Table View tab.

In the left pane, I select Fisher’s Iris Data. (Yes, it’s the Fisher of ANOVA fame.) 
This action previews the table in the right pane, as you can see in Figure A-4.

All that’s left to do is load the table into the spreadsheet. I click the down arrow 
next to the Load button at the bottom of the dialog box and select Load to put the 
table into the worksheet, which now looks like Figure A-5. As a bonus, Excel even 
names the worksheet tab for you.

And that’s all there is to it!

FIGURE A-1: 
Choosing Data ➪    

From Web.

FIGURE A-2: 
The Web dialog 
box with a URL.

https://en.wikipedia.org/wiki/Iris_flower_data_set
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FIGURE A-3: 
The Navigator 

dialog box.

FIGURE A-4: 
The Iris data set 
in the Navigator 

window.
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Sometimes your data are in your computer or on a cloud drive, but not in a spread-
sheet. For example, you might try importing from text and from .csv files. In the 
first step, you navigate through folders and files, of course, rather than enter a 
URL into a dialog box.

I tried importing from a .pdf file. It was iffy. Perhaps you’ll have better luck than 
I did.

FIGURE A-5: 
The Iris data set 

in the worksheet.
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Tips for Teachers (and 
Learners)

By now, I’m sure it’s clear to you that Excel is a wonderful tool for managing, 
manipulating, and analyzing data. One of Excel’s assets is its immediacy: 
As soon as you click OK, you see results.

This immediacy is also the foundation of a tool that can illuminate understanding 
as well as it manipulates and calculates. This appendix gives you a couple of ways 
to utilize Excel as a teaching tool, to help either students or yourself. Perhaps 
you’ll come up with some other ways.

Augmenting Analyses Is a Good Thing
Students sometimes look at the output of a data analysis tool and don’t have a 
good idea about where the numbers came from. Excel is ideally suited to solve that 
problem.

When I teach a statistical technique, I often use Excel to augment an analysis. That 
is, I use Excel for additional calculations on the data and then connect these results 
to the results of the analysis. The objective is to give students a deeper under-
standing of what the output means.

IN THIS APPENDIX

 » Excel as a teaching tool

 » Augmenting analyses

 » Simulating data

 » Extracting data from graphs

Appendix B
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Understanding ANOVA
In Chapter 12, I discuss ANOVA and show you how to use Anova: Single Factor. 
Figure B-1 shows the example I used, and Figure B-2 shows the output of the 
ANOVA.

Here’s how to use Excel to explain those sources of variation in the ANOVA table 
in Figure B-2.

I begin with the MSTotal. The Data Analysis tool doesn’t compute this term, so I 
divide the SSTotal by the dfTotal. For this ANOVA table, that’s

=B15/C15

in cell D15.

FIGURE B-1: 
Chapter 12 

example of the 
single-factor 

ANOVA.

FIGURE B-2: 
The completed 

ANOVA.
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Remembering that Mean Square (MS) is just another name for variance, I use 
VAR.S to show exactly what this term is. It’s the variance among all the scores.

So, on the worksheet with the data, I select a cell and type

=VAR.S(B3:D12)

The answer is equal to the value I just calculated for MSTotal.

Now for the MSWithin. That’s just a weighted average of the variances within each 
of the groups. To weight a group variance, I have to multiply it by the number of 
scores in the group minus 1.

Helpfully, Excel provides a Count column that gives the number of scores in each 
group. I add a Count – 1 column that subtracts 1 from each count. Next, I define 
Variance as the name of the three rows in the Variance column, and Count_1 as 
the name of the three rows in the Count-1 column.

I selected cell I5 for the weighted average, which is

=SUMPRODUCT(Variance,Count_1)/SUM(Count_1)

and is the same as the MSWithin.

Finally, the MSBetween is the variance among the group means, with each group 
mean multiplied by the number of scores that contributed to that mean. This 
involves squaring the deviation of a group mean from the grand mean and multi-
plying by its Count.

So, I selected cell I9, inserted the grand mean, and then defined Grand_Mean as 
the name of that cell. I also defined Count as the name of the three rows in the 
Count column. Then I created a Deviation column whose entries are the group 
means minus the grand mean. I defined Deviation as the name of the three rows 
in that column.

Next, I selected cell I13 and typed

=SUMPRODUCT(Count,Deviation^2)/2

I divided by two because I’m calculating the variance among three numbers. The 
answer is the MSBetween.

Figure B-3 shows what I added to the output of the Data Analysis tool.
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Revisiting regression
In Chapter 14, I explain regression and cover the Data Analysis Regression tool. 
Figure  B-4 shows the data, and Figure  B-5 shows the output of the Multiple 
Regression tool. For clarity, I deleted some information and some graphs and 
moved the Residual output.

Once again, I begin with MSTotal. To calculate it, I type

=C14/B14

FIGURE B-3: 
The augmented 
ANOVA output.

FIGURE B-4: 
The data for the 

multiple 
regression 
example in 

Chapter 14.
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into cell D14. Next, I select a cell in the data worksheet and type

=VAR.S(GPA)

into that cell. (I had already defined GPA as the name of the entries in column E.) 
The answer is the same as the MSTotal I just calculated.

One point of this exercise is to show that the residuals (the differences between 
observed GPA and predicted GPA) form the foundation of many of the numbers in 
the Regression tool output. I defined Residuals as the name of cells I4:I23.

The SSResidual is the sum of the squared residuals. To show this, I select cell I26 
and type

=SUMSQ(Residuals)

The result is equal to the SSResidual in the ANOVA table.

Another point of this exercise is to show the interconnections among numbers in 
the output. The standard error is the square root of the SSResidual after I divide by its 
degrees of freedom (df). That’s also the square root of the MSResidual, so in cell I29 
I type

=SQRT(D13)

FIGURE B-5: 
The Regression 

tool output, 
altered for clarity.
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How about that R Square? That’s the square of the correlation coefficient (listed as 
Multiple R). And that’s just the SSRegression divided by the SSTotal. In cell G26 that’s

=C12/C14

Figure B-6 shows all the additions I made to the output.

As you go through the Excel statistical functions and the Data Analysis tools, I’m 
sure you’ll come up with additional ways to use Excel to clarify the underlying 
concepts.

When you do, I’d like to hear from you.

Simulating Data Is Also a Good Thing
If you teach courses that involve data analysis, you often encounter published 
papers that present analyses like Between-Groups ANOVA or independent groups’ 
t-tests. Perhaps you’d like your students to replicate the published analyses but 
the authors don’t typically supply raw data: Instead, they provide summary sta-
tistics like mean, standard deviation, and N for each group.

FIGURE B-6: 
The augmented 
Regression tool 

output.
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You can still have students complete the analyses. Just simulate data for them to 
work with. The idea is to generate numbers that conform to the summary statis-
tics in the paper.

Suppose a published study involves several groups. One of those groups consists 
of ten scores whose mean on the dependent variable is 25 with a standard devia-
tion (calculated with N-1 in the denominator) of 4.

How would you generate ten scores that have a mean of 25 and a standard devia-
tion of 4?

Figure B-7 presents a spreadsheet that shows you. Cells B1 and B2 contain the 
target mean and standard deviation. In Column E, I generated ten random values. 
I used RAND() in E2 through E11 and then copied and pasted the randomly gener-
ated values into those same cells in order to stabilize those values.

Although I used RAND(), you can use any Excel randomization technique (like 
RANDBETWEEN or the ToolPak random number generator) to generate the random 
numbers for this part of the procedure.

Cells E12 and E13 show that I calculated the mean and standard deviation (via 
STDEV.S) of the ten random values. Then I used STANDARDIZE to calculate the 
z-scores in Column F.

What does that give us? A distribution whose mean is 0 and whose standard devi-
ation is 1 — that’s what. And now we can easily compute the simulated scores. 
Each simulated score is just

Simulated Score Target Mean Target Standard Deviation z-scoore

FIGURE B-7: 
Simulating data 

to conform to 
specific statistics.
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So, as the formula bar in Figure B-7 shows, in cell G2 I typed

=$B$1+$B$2*F2

and dragged down to cell G11. And voilà! I now have ten simulated scores with the 
target mean and standard deviation. Follow this procedure for each group and you 
have simulated data for an analysis.

If the study’s authors calculated standard deviation with N in the denominator 
rather than N-1, use STDEV.P to find the standard deviation in cell E13.

This technique doesn’t work for repeated measures studies.

When All You Have Is a Graph
Sometimes you encounter an article that presents the data as points on a graph. If 
you want to analyze those data somehow, or perhaps redo the graph for a presen-
tation, you have to get numerical values for the data points.

This is where WebPlotDigitizer comes in. The brainchild of Ankit Rohatgi, this 
terrific web-based application asks you to supply an image of the graph. WebPlot-
Digitizer puts the image onscreen, and you use the mouse to calibrate a couple of 
points on the x- and y-axes. Then you use the mouse to select the points on the 
graph.

After you finish selecting points, WebPlotDigitizer supplies their numerical values 
for you to download. One of the download options is even a CSV spreadsheet! I’d 
tell you more, but you ought to discover the fun for yourself.

For the details, visit

https://automeris.io/WebPlotDigitizer

Happy data extraction!

https://automeris.io/WebPlotDigitizer/
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More on Excel Graphics

In Chapter 3, I describe the graphs (excuse me, charts) you’ll probably use most 
frequently. In this appendix, I delve into Excel charts that are a bit more 
esoteric.

Tasting the Bubbly
A bubble chart is a way of visualizing three dimensions in a two-dimensional chart. 
Each data point appears as a circle, or “bubble,” in the chart. The bubble’s posi-
tion along the x- and y-axes represents two dimensions, and the size of the bubble 
represents the third.

Figure C-1 shows data I use in Chapter 14 when I discuss multiple regression. The 
data are for the 20 students listed in Column A. Column B shows SAT data (under 
the old scoring system), Column C shows the high school average, and Column D 
shows college GPA.

In the accompanying bubble chart, SAT is on the x-axis, high school average is on 
the y-axis, and the width of the bubbles represents college GPA.

I select cells B2 through D21, and the bubble chart is the sixth choice under Rec-
ommended Charts. I reformatted the axes and the bubbles a bit to make every-
thing stand out clearly.

IN THIS APPENDIX

 » Creating bubbles

 » Taking stock

 » Building boxes and whiskers

 » Adding a dimension to maps

Appendix C
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iPad Excel has no Recommended Charts option, but iPad users can create the 
charts in this appendix by choosing Insert | Charts.

Taking Stock
If you’re keeping tabs on all the companies in your diversified stock portfolio, this 
is the chart for you.

Figure C-2 shows the prices for Google stock on January 5-13, 2016. (The data are 
freely available at www.google.com/finance/historical?q=NASDAQ:GOOG.)

Each data point in the Stock chart is a box with a line extending upward and a line 
extending downward. The upper and lower bounds of the box represent the open-
ing and closing prices on a particular date. Note that I did not say respectively. 
That’s because sometimes the opening price is higher than the closing price, and 
sometimes vice versa.

How do you know which is which? If the box is empty, the opening price is the 
lower bound (and the stock posted a gain for the day). If the box is filled, the 
opening price is the upper bound (and the stock posted a loss).

The endpoint of the upward-extending line is the high price for the day, and the 
endpoint of the downward-extending line is the low price for the day.

Notice that Excel fills in the x-axis with empty dates (days when the stock market 
was closed.)

FIGURE C-1: 
A bubble chart 

shows three 
dimensions in a 

two-dimensional 
chart.

http://www.google.com/finance/historical?q=NASDAQ:GOOG
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To create the chart, follow these steps:

1. Enter your data into a worksheet.

Figure C-3 shows the data in the worksheet.

2. Select the data that go into the chart.

In this example, that’s cells A1 through E8. I include the labels.

3. Choose Insert | Recommended Charts from the main menu and select 
the chart type from the menu that appears.

Curiously, Excel doesn’t recommend the Stock chart. So I select the All Charts 
tab, pick Stock in the left column, and choose Open-High-Low-Close from the 
options. Then I click OK. Figure C-4 shows the result.

FIGURE C-3: 
The data for the 

Google Stock 
chart.

FIGURE C-2: 
A Stock chart 

showing Google 
stock prices Jan 

5-13, 2016. 
Data from Google stock prices
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4. Modify the chart.

I clicked the generic chart title and typed a new title. Next, I clicked the Chart 
Elements tool (labeled with a plus sign) and used it to add generic axis titles to 
the chart. I then typed new titles. Finally, I selected each axis title and typed 
Ctrl+B to turn the font bold. I did that for Chart Title, too.

Scratching the Surface
The Surface chart is a three-dimensional way of showing the results of combining 
one variable with another. The spreadsheet in Figure C-5 shows Study Time (in 
hours) combined with Number of Breaks. The number in each cell is the score on 
an exam.

In the accompanying Surface chart, Study Time is on the x-axis (the one that 
shows Series 1 through Series 5), Number of Breaks is on the y-axis, and Perfor-
mance (the exam score) is on the z-axis. Colored bands (not easily discernible on 
the grayscale illustration) indicate score intervals.

I selected the data in cells C3 through G7 and then picked Surface from the All 
Charts tab. The first option results in the Surface chart shown in the figure.

FIGURE C-4: 
Creating an 

Open-High-Low-
Close Stock chart.
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On the Radar
The Radar chart plots the values of each of a set of categories on a set of concentric 
rings. The values appear along an axis that starts at the center and ends on the 
outer ring.

In Figure C-6, the categories are Madison, Wisconsin, and Jacksonville, Florida. 
The values are the monthly mean high temperatures in each city (from www.
usclimatedata.com). As you might expect, the chart shows that, for every month, 
the mean high temperature in Jacksonville is higher than in Madison.

FIGURE C-5: 
Creating a 

Surface chart.

FIGURE C-6: 
Creating a  

Radar chart.

https://www.usclimatedata.com/
https://www.usclimatedata.com/
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I selected cells A1 through M3 and then selected Radar from the All Charts tab.

Mac users might have to hunt around a little to find some of the next chart types.

Growing a Treemap and Bursting 
Some Sun

A treemap is a type of hierarchical chart that shows patterns in data. Rectangles 
represent tree branches, and smaller rectangles represent subbranches.

In Figure C-7, the data in the spreadsheet are Research and Development expen-
ditures in three US federal agencies in 2010. (Source: www.census.gov/library/ 
publications/2011/compendia/statab/131ed/science-technology.html) 
Each agency is the highest level in the hierarchy (tree branch), and the area is the 
next level (subbranch). To make the treemap, I selected cells A1 through C8 and 
picked Tree Map from Recommended Charts.

To see the full effect of this chart, you have to expand it from the view in Figure C-7. 
Note that rather than show the dollar figures, the treemap represents them as pro-
portions of area.

FIGURE C-7: 
Creating a 
treemap.

http://www.census.gov/library/publications/2011/compendia/statab/131ed/science-technology.html
http://www.census.gov/library/publications/2011/compendia/statab/131ed/science-technology.html
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The Sunburst chart illustrates the same type of data as the treemap. Figure C-8 
shows the Sunburst chart for the data in Figure C-7. The highest level in the hier-
archy is in the inner ring, and the sublevels are in the outer ring. Like the treemap, 
the Sunburst chart doesn’t show the dollar figures but rather represents them as 
proportions. I created this one by selecting cells A1 through C8m and then Sun-
burst from Recommended Charts.

Building a Histogram
Histograms have always been part of Excel. You can use the ToolPak Histogram 
tool to create one, or you can use the Frequency function along with the Column 
chart. Excel enables you to do the latter just by selecting a data array and then 
inserting the Histogram chart.

The data in Figure C-9 are the SAT scores for the 20 students in Figure C-1. To 
create the accompanying histogram, I selected cells C2 through C21, and Histo-
gram from All Charts. As you can see, Excel takes a guess about the interval size 
(210, in this case). To change it, double-click the x-axis and change Bin Width in 
the Format Axis pane.

FIGURE C-8: 
Sunburst chart.
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Ordering Columns: Pareto
The Pareto chart is a combination of a column chart and a line chart. The column 
part is special: The columns appear in decreasing order of magnitude. The line 
represents cumulative percentage.

Figure C-10 shows what I mean. The data are the number of scientists (× 1,000) 
working in the indicated industries in 2006. (Source: www.census.gov/library/ 
publications/2011/compendia/statab/131ed/science-technology.html)

FIGURE C-9: 
Creating a 

histogram.

FIGURE C-10: 
Creating a  

Pareto chart.

http://www.census.gov/library/publications/2011/compendia/statab/131ed/science-technology.html
http://www.census.gov/library/publications/2011/compendia/statab/131ed/science-technology.html
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The columns in the Pareto chart represent the industries, arranged in decreasing 
order, and the line shows the cumulative percentage of each industry, as per the 
percentage y-axis on the right.

I selected cells A2 through B10, and Pareto from Recommended Charts.

Of Boxes and Whiskers
The Box & Whiskers chart, which is valuable for statistical work, is vaguely similar 
in appearance to a Stock chart — each data point is a box with an upward exten-
sion and a downward extension. That’s where the similarity ends, though.

In the spreadsheet shown in Figure C-11, the data are the number of Internet con-
nections in the eight districts of the fictional Farchadat County for 2014–2016. I 
created the chart by selecting cells B2 through D9, and Box & Whiskers from All 
Charts.

As you can see, each extension looks like an uppercase T. Those are the “whis-
kers.” Each box and its whiskers summarize an array of data. The lower and upper 
bounds of the box are the 25th and 75th percentile of the data. (See Chapter 6.) A 
horizontal line inside the box indicates the median (also known as the 50th per-
centile). An X inside the box indicates the mean. The end of the upward whisker is 
the highest value, and the end of the downward whisker is the lowest value.

FIGURE C-11: 
Creating a Box & 

Whiskers chart.
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If you add each data array individually to the Box & Whiskers chart (instead of all 
at one time), each box shows all points in the data array. To get this done, choose 
the Box & Whisker chart before you select any data. Then, to add an array individ-
ually, right-click the chart and choose Select Data from the pop-up menu. That 
gets you started.

3D Maps
As its name implies, 3D Maps provides three-dimensional visualization. In this 
section, I show you how to use 3D Maps to create a globe with data on numerous 
countries. (But it’s not available on Mac Excel.)

Figure C-12 shows part of a spreadsheet with data on life expectancy at birth, 
expected years of schooling, and mean years of schooling for the 188 countries in 
Column A. (Source: http://hdr.undp.org/en/composite/HDI.)

I use 3D Maps to create a three-dimensional globe that shows these countries and 
their associated statistics. The globe comes courtesy of Microsoft’s Bing search 
engine, so an active Internet connection is necessary.

FIGURE C-12: 
Life expectancy, 

expected years of 
schooling, and 
mean years of 

schooling for 188 
countries.

http://hdr.undp.org/en/composite/HDI
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To create the globe, follow these steps:

1. Enter the data into a worksheet.

2. Select the data, including the column headers.

3. Choose Insert | 3D Map | Open 3D Maps from the main menu.

After a few seconds (be patient!), the page shown in Figure C-13 opens.

4. Drag fields (column header names) to the Layer pane.

I dragged Life Expectancy at Birth, Expected Years of Schooling, and Mean 
Years of Schooling into the Height box. Figure C-14 shows the result. You can 
see the data added to the globe, as stacked columns in the center of each 
country.

5. Reveal the globe.

Close the pane on the left and the pane on the right, leaving the globe pane 
open, as shown in Figure C-15.

FIGURE C-13: 
This screen opens 

when you select 
Open 3D Maps.
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FIGURE C-15: 
The finished 

globe.

FIGURE C-14: 
The globe, with 
data added as 

stacked columns.
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A stationary 3D globe wouldn’t be useful, because many of the countries would be 
hidden from view. The onscreen controls (and judicious clicking) enable you to 
rotate the globe and expand or contract it. You can also change the colors of the 
columns and reorient them.

3D Maps is not intended only for international mapping. You can create maps on 
a much smaller scale.

Filled Maps
This neat little feature enables you to create a two-dimensional map superimposed 
with descriptive statistics. And it’s easy! (And it’s on the Mac! And on the iPad!) As 
is the case for 3-D maps, an active Internet connection is a must-have item.

I illustrate with the data shown in Figure C-16.

Select any cell in Column A. Then choose Insert | Maps | Filled Map from the main 
menu. (iPad users, tap Insert | Charts | Maps and then tap the icon in the box that 
opens.) Figure C-16 shows the result — a world map with color-coded life expec-
tancy data filled in for each listed country in Column A. On the page you’re reading, 
it might be difficult to discern the different fill shades, which look better in color.

Notice that Excel automatically selects the data in column B as the data to  
superimpose on the map. If you want to fill in the data for a different column, like 
column C, select the entire column A and the entire column C before you select 
Filled Map.

FIGURE C-16: 
A filled map that 

shows life 
expectancy at 

birth for the 
countries in 
Figure C-12.
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The Analysis of 
Covariance

One major point of this book is that Excel comes supplied with a surprising 
number of analytical tools and formulas. The toolset isn’t as extensive as 
you’d find in a dedicated statistics package, but it’s still impressive.

Some analyses, unfortunately, aren’t part of Excel. And some of those might turn 
out to be important for you. In many cases, with a little ingenuity you can use the 
existing parts of Excel to perform those analyses anyway. In this appendix, I focus 
on one of those analyses.

Covariance: A Closer Look
In Chapter 15, I mention covariance in connection with correlation. I go over it 
briefly as the numerator of the correlation coefficient. I also mention that covari-
ance represents two variables changing together.

What does that mean, exactly?

IN THIS CHAPTER

 » Another look at covariance

 » Why and how you analyze covariance

 » Analysis of covariance (ANCOVA) in 
Excel

Appendix D
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Imagine a group of people on whom you measure mathematical ability and socia-
bility. (Just assume you have valid, reliable ways of measuring both.) If you find 
that the people with high mathematical ability are the most sociable, and that the 
people with low mathematical ability are the least sociable, this thing called 
covariance is numerically high and positive. This type of positive relationship is 
called a direct relationship.

A different result is possible: The people with high mathematical ability might 
turn out to be the least sociable, and the people with low mathematical ability the 
most sociable. If that happens, covariance is numerically high and negative. This 
type of negative relationship is called an inverse relationship.

Still another result is possible: You might find no connection whatsoever between 
mathematical ability and sociability. In this case, the two variables are indepen-
dent, and the numerical value of covariance is close to zero. It might be slightly 
positive, or it might be slightly negative, but it’s close to zero.

Sounds a lot like correlation? It should. As I mention earlier, covariance is the 
numerator of the correlation coefficient. One way to look at it is that the correla-
tion coefficient puts an upper and a lower bound on covariance. With a little expe-
rience, you can understand what a correlation coefficient of .98 means, or a 
correlation coefficient of  .62. Without a lot of context, it’s hard to know what a 
covariance of  473.5 means.

Why You Analyze Covariance
So, you’ve had a refresher on what covariance is. Why do you want to, um-m-m, 
analyze it?

Let’s begin with a typical study: You randomly assign individuals to different sets 
of conditions and then assess each person’s performance under those conditions. 
For example, you might randomly assign 15 children to one of three groups that 
differ in how they prepare for a math exam: by listening to a human instructor, 
completing an interactive program on a computer, or reading a textbook. Then 
they take the exam.

The performance on the test is the dependent variable. The three preparation con-
ditions make up the independent variable. The goal is usually to find out whether 
the different conditions of the independent variable affect the dependent variable. 
Chapter 12 explains that this involves a hypothesis test that looks like this:



APPENDIX D  The Analysis of Covariance      531

H0: μInstructor = μComputer = μText

H1: Not H0

In Chapter  12, I also point out that the appropriate statistical technique is the 
analysis of variance (ANOVA).

So far, so good. What about covariance?

In addition to the dependent variable and the independent variable, a third kind of 
variable can come into play. Here’s how. Suppose you have another relevant mea-
sure for each of the 15 children: mathematics aptitude. In addition to preparation 
type, mathematics aptitude can affect each child’s exam performance. This third 
variable is called the covariate. The relationship between the dependent variable 
and the covariate is covariance.

Big shots in the field of research design and analysis have a name for randomly 
assigning individuals to different conditions of the independent variable and 
keeping everything else the same (like the time of day you give the test, the 
amount of time each child prepares, the amount of time each child has to take the 
test). They call this experimental control.

They also have a name for assessing the effects of a covariate — that is, its covar-
iance with the dependent variable. They refer to that as statistical control. Both are 
valuable tools in the analyst’s arsenal.

Bottom line question: Why do you need statistical control? Suppose you carry out 
the study and find no significant differences among preparation groups. This 
might mean that experimental control wasn’t powerful enough to discern an 
effect of preparation type. That’s when statistical control can come to the rescue. 
Suppose mathematics aptitude affected performance in ways that masked the 
effects of preparation type. That is, does the possible correlation of performance 
with aptitude affect the results?

By combining experimental control with statistical control, analysis of covariance 
(ANCOVA) answers that question.

How You Analyze Covariance
How do you combine the two types of control?
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In Chapter 12, I point out that ANOVA separates SSTotal into SSBetween and SSWithin. 
Divide each SS by its degrees of freedom and you have three MS (variances). The 
MSBetween reflects differences among group means. The MSWithin estimates the pop-
ulation variance. It’s based on pooling the variances within the groups. If the 
MSBetween is significantly greater than the MSWithin, you can reject the null hypoth-
esis. If not, you can’t. (Read Chapter 12 if this all sounds strange to you.)

In ANCOVA, you use the relationship between the dependent variable and the 
covariate to adjust SSBetween and SSWithin. If the relationship is strong, the adjust-
ment likely increases SSBetween and reduces SSWithin. Statistics, like most other 
aspects of our world, offer no free lunches: The adjustment lowers the dfWithin by 
1. It might help to think of it this way:

ANOVA:

F
SS df

SS df
Between Between

Within Within

ANCOVA:

F
SSBetween  something based on relationship with covariatte

 something based on relationship w 

df

SS
Between

Within iith covariate dfWithin 1

A possible outcome of the adjustment (if the relationship is strong) is that the F 
ratio is higher for ANCOVA than for ANOVA. In practical terms, this means that 
adding statistical control can result in a more powerful study (that is, greater 
capability to find an effect) than experimental control alone.

Here’s a way to understand ANOVA versus ANCOVA: ANOVA helps you find a nee-
dle in a haystack. ANCOVA also does this, but it removes some of the hay from the 
haystack — and it makes the needle a little bigger, too.

ANCOVA in Excel
Although Excel has no built-in tools for ANCOVA, you can use what Excel does 
provide to make ANCOVA much easier than it looks in statistics books.

What does Excel provide? When it comes to covariance, recall that the COVARIANCE.P 
and COVARIANCE.S worksheet functions do all the calculations for you, as does the 
Covariance analysis tool.
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It sounds like the Covariance analysis tool is ideal for something called analysis of 
covariance (ANCOVA). Oddly, it’s not. And neither do you have a use for the covar-
iance worksheet functions as you proceed.

Instead, I show you two approaches that use other Excel features to carry out an 
ANCOVA.  One approach uses the Anova: Single Factor analysis tool along with 
some worksheet functions. The other uses the Regression analysis tool along with 
some worksheet functions.

Both approaches tackle the data in Table D-1. In both methods, I use regression 
slopes to express the relationship between the dependent variable and the 
covariate.

These methods are for the kind of research design I discuss in Chapter 12 (single-
factor ANOVA). You can use ANCOVA for any kind of research design that involves 
ANOVA, but these two particular methods don’t work for more complicated 
designs (as in Chapter 13, for example).

Method 1: ANOVA
When most statistics textbooks cover analysis of covariance, they show you a lot 
of arcane-looking computation formulas designed to avoid even more complex-
looking regression-related calculations. The result is that they often obscure what 
ANCOVA is supposed to do.

With this method, and the next one, I show you how to harness Excel’s power to 
work around all of that. My goal is to make ANCOVA much easier than it looks in 
statistics books.

TABLE D-1 Data for Exam Performance with Three Preparation  
Methods and for Mathematics Aptitude

Human Computer Text

Math Aptitude Exam Math Aptitude Exam Math Aptitude Exam

10 6 7 9 7 9

9 9 7 5 9 12

8 7 8 14 4 9

6 2 11 10 11 18

9 10 10 15 7 11
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Figure D-1 shows the ANCOVA worksheet for this method. I also walk you through 
the steps. I did some creative cutting-and-pasting to position the analysis results.

The data from Table D-1 are in cells B1:D13, separated into one table for the depen-
dent variable data and into another for the covariate data. I structure the data this 
way because I have to use the Anova: Single Factor tool on the dependent variable 
and again on the covariate. The input to the Anova tool is a contiguous range of 
cells, so the layout in Table D-1 doesn’t work.

The first thing I do is set up to calculate bwithin, a quantity I use to adjust the SS and 
to adjust group means for post-analysis testing.

What is bwithin? Imagine a scatterplot for each of the three groups and a regression 
line through each scatterplot. Each regression line has a slope. The value of bwithin 
is the average of the group slopes with each slope weighted by the variance of the 
covariate within the group.

This might be a rare case where the formula is clearer than the words. Here it is:

b
s b

swithin
xi i

xi

2

2

So I used VAR.S to calculate the variance of each group within the covariate. Those 
variances are in row 14, labeled VarianceX. I could have run the Anova tool to pro-
duce these variances. I did it this way for clarity. The sum of these variances, 12.4, 
is in cell E14.

FIGURE D-1: 
The Method 1 

ANCOVA 
worksheet for the 
data in Table D-1.
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Then I used SLOPE to calculate the slope within each group. Those are in row 15, 
labeled SlopeXY.

Row 16, labeled VarX*SlopeXY, contains the product of each group slope multi-
plied by the variance in that group. Cell E16 holds the sum of these products.

The value of bwithin is in cell B18. The formula for that cell is

=E16/E14

Cell B19 holds another slope I use for SS adjustment. It’s called btotal, and it repre-
sents the slope of the regression line drawn through a scatterplot of all the scores 
regardless of the group they’re in. The formula for B19 is

=SLOPE(B2:D6,B9:D13)

Next, I constructed the spiffy looking ANCOVA table in cells A21:F25. The objective 
of this whole process is to fill in this table. I formatted all labels and borders to 
make the table look something like the results of an Anova: Single Factor analysis. 
Then I filled in the sources of variation in A23:A25, and the df in C23:C25. The df 
are the same as for ANOVA, except that you lose a df from the dfWithin, and that, of 
course, is reflected in the dfTotal.

The next order of business is to run the Anova: Single Factor analysis tool. I ran it 
once for the dependent variable and once for the covariate. Why for the covariate? 
After all, I’m not testing any hypotheses about math aptitude. The reason for an 
ANOVA on the covariate is that the ANOVA output provides SS values I need in 
order to complete the ANCOVA.

In Chapter 12, I explain how to use this tool. The only difference is that, in this 
case, I direct the output to this worksheet rather than to separate worksheets.

I removed some rows from the Anova tool’s outputs so that everything would fit 
into one screen shot, and I modified them a bit for clarity.

The values in the ANOVA tables enable me to fill in the ANCOVA table. The Adjusted 
SSTotal is

Adjusted SS SS b SS

Adjusted SS

TotalY TotalY Total TotalX

Total

 

 

2

YY 226 93 1 03 52 4 171 70
2

. . . .
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This means that

=I13-B19^2*I27

goes into cell B25 in the ANCOVA table. By the way, I rounded off to two decimal 
places to make everything look nicer on this page. The worksheet has many more 
decimal places.

Next up: Adjusted SSWithin. The formula for the adjustment is

Adjusted SS SS b SSWithinY WithinY Within WithinX 2

Numerically, that’s

Adjusted SSWithinY 158 8 1 23 49 6 83 29
2

. . . .

So in cell B24, I put this formula:

=I11-B18^2*I25

Adjusted SSBetween? That’s just

=B25-B24

in cell B23.

I complete the ANCOVA table by dividing each Adjusted SS by its df, and then 
dividing the Adjusted MSBetween by the Adjusted MSWithin to compute F.

That last column in the ANCOVA table, P-value, is a little trick courtesy of F.DIST.
RT. The formula in cell F23 is

=F.DIST.RT(E23,C23,C24)

Just below the ANCOVA table, I put the adjusted means for the dependent variable. 
These get you into the area of post-analysis testing, which I cover in a later sec-
tion. For now, I just tell you that each adjusted mean is

Adjusted y y b x Xi i within i 

where that uppercase X with a bar over it represents the average of all 15 scores in 
the covariate.
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For this example, the adjusted means are

Adjusted y

Adjusted y

Human

Computer

 

 

6 8 1 23 8 4 8 2 6 55

1

. . . . .

00 6 1 23 8 6 8 2 10 11

11 8 1 23 7 6 8

. . . . .

. . . .Adjusted yTextbook 22 12 54.

The adjustments increase the spread among the means.

In this worksheet, the group means are in the ANOVA outputs. Specifically, they’re 
in K4:K6 for the dependent variable and in K18:K20 for the covariate. So, the for-
mula for the adjusted Human mean (in cell B28) is

=K4-B18*(K18-AVERAGE(B9:D13))

For the adjusted Computer mean (cell C28), it’s

=K5-B18*(K19-AVERAGE(B9:D13))

and for the adjusted Textbook mean (cell D28), it’s

=K6-B18*(K20-AVERAGE(B9:D13))

What’s the benefit of ANCOVA? Take a look at Figure D-1. Compare the result of 
the dependent-variable ANOVA (F2,12 = 2.57) with the result of the ANCOVA (F2,11 = 
5.84). Although you sacrificed a df, the P-value shows that the ANCOVA result is 
significant. The ANOVA result is not. The ANCOVA adjusted the SSBetween upward, 
and it adjusted the SSWithin downward.

Bottom line: The relationship between the dependent variable and the covariate 
enables you to uncover a significant effect you might otherwise miss. In this 
example, ANCOVA avoids a Type II error.

Method 2: Regression
If the method in the preceding section works, why am I bothering to show you yet 
another method? Even more importantly, why should you take the trouble to 
master it?

The reason I’d like you to read on is this: The method I’m about to show you asks 
you to change your mindset about the data. If you can do that, you’ll find yourself 
open to another way of looking at statistical analysis and to mastering some new 
statistical concepts.
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Here’s what I mean. The worksheet shown in Figure D-2 shows the data from 
Table D-1 in a different type of layout. The figure also shows the work for the 
completed ANCOVA. Again, creative cutting-and-pasting positioned the results of 
the analyses.

Column A has the math exam data, and column B has the math aptitude data, but 
they’re not separated into three groups. What’s going on here?

My plan is to treat this as a multiple regression. Exam is the dependent variable, 
and Math Aptitude is an independent variable. But it’s not the only independent 
variable.

The key is to somehow represent the group that each individual is a member of. 
Tag1 and Tag2 (in Columns C and D) take care of that. If a child is in the Human 
Instructor group, Tag1 = 1 and Tag2 = 0. If a child is in the Computer group, Tag1 
= 0 and Tag2 = 1. If a child is in the Textbook group, Tag1 = 0 and Tag2 = 0. In 
general, with k groups, k–1 columns can specify group membership in this way. 
Just to let you know, in the statistics world, Columns B, C, and D are called vectors, 
but I won’t go there.

This categorization scheme works when you have the same number of individuals 
in each group. If you don’t, things get dicey.

I drew lines to separate the three groups, but that’s just to clarify.

FIGURE D-2: 
The Method 2 

ANCOVA 
worksheet for the 
data in Table D-1.
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What I’ve set up is a multiple regression with a dependent variable (Exam) and 
three independent variables (Math Aptitude, Tag1, and Tag2). What I’m saying is 
that Exam score depends on Math Aptitude, Tag 1, and Tag 2.

Below the data layout, cell B18 holds SSTotalX. The formula for that cell is

=COUNT(B2:B16)*VARP(B2:B16)

meaning that I multiplied the number of scores in Column B (15) by the variance 
in Column B (treated as a population of 15 scores, hence VARP) to give SSTotalX, the 
numerator of a variance.

I also calculated btotal in cell B20:

=SLOPE(A2:A16,B2:B16)

What about bwithin? Patience.

Below those values is a table of means and adjusted means, which I get to later.

You might not believe this, but the analysis is almost done.

All that remains is to run the Regression analysis tool and use its results to com-
plete the ANCOVA table.

In Chapter 14, I show you how to use the Regression tool. The difference here (as 
with ANOVA in Method 1) is that I directed the output to this worksheet rather 
than to a separate worksheet. For this example, the Input Y range in the Regres-
sion tool dialog box is A1:A16. Because this is a multiple regression, the Input X 
range is B1:D16.

The ANCOVA table is below the Regression output. As earlier, I formatted the 
whole thing — labels, rows, columns, and all. Then I filled in the df.

I begin, as in Method 1, with the Adjusted SSTotal. Again, that’s

Adjusted SS SS b SS

Adjusted SS

TotalY TotalY Total TotalX

Total

 

 

2

YY 226 93 1 03 52 4 171 70
2

. . . .

So, this time,

=H14-(B20^2*B18)
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goes into cell G26.

What next? The values for the Adjusted Within row are in the ANOVA table for the 
Regression output. They’re in the row labeled Residual. That’s right  — the 
Adjusted SSWithin is the SSResidual and Adjusted MSWithin is the MSResidual.

That means

=H13

goes into cell G25 and

=I13

goes into cell I25.

The Adjusted SSBetween

=G26-G25

is in cell G24.

I divided the Adjusted SS’s by the df to produce the Adjusted MSs. Then I divided 
the Adjusted MSBetween by the Adjusted MSWithin to compute F. The rightmost entry, 
Significance F, is based on FDIST, as in Method 1.

Did I forget bwithin? Nope. It’s in the Regression output in cell G18 under Coeffi-
cients. It’s the regression coefficient for Math_Aptitude. I used this value to cal-
culate the adjusted means in the Means table. After using AVERAGE to compute the 
means for the dependent variable and the covariate, I put this formula into cell D24

=B24-$G$18*(C24-AVERAGE($B$2:$B$16))

and autofilled D25 and D26.

When you began reading this subsection, you might have wondered why I both-
ered to show you this method. Now that you’ve read it, you might wonder why I 
bothered to show you the first one!

After the ANCOVA
As I point out in Chapter 12, a significant F value indicates that an effect is some-
where within the data. It’s still necessary to zoom in on where.
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Post-analysis tests come in two varieties: the kind you plan in advance and the 
kind you don’t. The first, planned comparisons, are motivated by your ideas about 
what to expect before you gather the data. The second, post-hoc tests, are moti-
vated by what looks interesting in the data you gathered.

In an ANOVA, you perform those tests on group means. In an ANCOVA, you adjust 
the group means (of the dependent variable) just as you adjust the SSs and the 
MSs. You also adjust the error term (the denominator) of the tests.

I deal here with planned comparisons. After adjusting the means (which I did in 
each Method), the next step is to adjust the MS that goes into the denominator of 
the planned comparisons. I refer to the adjusted MS as MS’error, and the way to 
calculate it is

MS Adjusted MS
SS k

SSError Within
BetweenX

WithinX
 1

1

in which k is the number of groups.

For the example, that’s

MSError 7 57 1
2 8 2
49 6

8 43.
.

.
.

In the Method 1 worksheet, I select a cell and enter

=D24*(1+(I24*2)/I25)

I can now proceed with planned comparisons as I do in Chapter 12.

From all I show you here, it looks like Method 1 has the advantage over Method 2. 
Using the ANOVA analysis tool gives you the values you need for the planned com-
parisons, and it gives you the dependent +variable ANOVA to compare against the 
ANCOVA.

With the data arranged as in Method 2, you can’t get all that information, can you?

Yes, you can. And that sets the stage for looking at a particular statistical analysis 
(ANOVA) in a new way, as I mention at the beginning of Method 2.

Read on.
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And One More Thing
In several chapters of this book, you see the interplay between ANOVA and regres-
sion: After every regression analysis, ANOVA tests hypotheses about regression 
ideas.

In this section, I turn things around: I take an exercise normally treatable via 
ANOVA, turn it into a regression problem, and use regression to do an analysis of 
variance. This is called the multiple regression/correlation (MRC) approach. It’s 
based on the work of psychologist/statistician Jacob Cohen, who in the late 1960s 
formulated the idea of multiple regression as a general system for data analysis.

Without going into all the details, Cohen’s idea is that many kinds of data are 
expressible in the format that regression operates on. Performing a regression 
analysis is all that’s necessary. In effect, various statistical techniques then 
become special cases of the general system.

The dependent variable data in Table D-1 provide an opportunity to illustrate this 
approach. With the groups identified under Tag1 and Tag2, and the Tags as inde-
pendent variables, ANOVA is exactly the same as multiple regression.

You might already be a step ahead of me. Figure D-3 shows the data laid out as 
shown in Figure D-2, but with different analyses creatively cut-and-pasted.

I ran the Regression analysis tool twice and directed the output to this worksheet 
both times. I deleted everything except the ANOVA from each output.

FIGURE D-3: 
The Method 2 

ANCOVA 
worksheet with 

two different 
regression 

analyses.
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The first time I ran the tool, the Input Y Range was A2:A16 (Exam) and the Input 
X Range was C2:D16 (Tag1 and Tag2). The result is the first ANOVA table, just 
below the Dependent Variable heading.

The second time, the Input Y Range was B2:B16 (Math Aptitude) and the Input X 
Range was C2:D16, resulting in the ANOVA table below the Covariate heading.

Do the numbers look familiar? They should. They’re the same as the two ANOVAs 
I ran for method 1. The only difference, of course, is the names in the Source of 
Variance column. Rather than Between and Within, these outputs display Regres-
sion and Residual, respectively.

To complete the post-analysis tests for Method 2 ANCOVA, you only need the 
ANOVA for the covariate. I show you both to illustrate the MRC approach.

You can extend the MRC approach to more complex hypothesis tests, like the ones 
I discuss in Chapter 13. When you do, it becomes a bit more complicated: You have 
to know more about multiple regression and how it applies to things like interac-
tion. In any event, the MRC approach is definitely worth looking into.
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